
Tangram II Manual
October 27, 2010

ii

Research Team

Professors:

• Edmundo de Souza e Silva (UFRJ) (Tangram-II PI)

• Rosa Maria M. Leao (UFRJ) (Tangram-II co-PI)

• Richard R. Muntz (UCLA)

• William Cheng

Students:

iii

Name level period Institution

Adenilson Raniery S. Pontes MSc (1998-1999) (PUC/BR)
Adriane de Quevedo Cardozo MSc (1999-2002) (UFRJ/BR)
Ana Paula Couto Silva PhD (1999-2006) (UFRJ/BR)
Antonio Augusto de Aragão Rocha PhD (2001-) (UFRJ/BR)
Antonio Mauricio N. Tartarini MSc (1998-1999) (PUC-RJ/BR)
Bernado Calil Machado Netto MSc (2001-2004) (UFRJ/BR)
Bruno Cesar Barbosa Alves PhD (2009) (UFRJ/BR)
Bruno Felisberto Martins Ribeiro MSc (2001-2004) (UFRJ/BR)
Carlos F. de Brito MSc (1998-1999) (UFRJ/BR)
Carolina C. Le Brum de Vielmond MSc (2001-2007) (UFRJ/BR)
Daniel Ratton Figueiredo MSc (1998-1999) (UFRJ/BR)
Daniel Sadoc Menasche MSc (2000-2005) (UFRJ/BR)
David Silva Boechat MSc (2004-2007) (UFRJ/BR)
Denise Jorge de Oliveira undergrad. (1998-1999) (UFRJ/BR)
Edmundo Grune de Souza e Silva MSc (2002-2009) (UFRJ/BR)
Flavio Pimentel Duarte MSc (1999-2003) (UFRJ/BR)
Felipe Mendonça Alcure undergrad. (2000-2002) (UFRJ/BR)
Fernando Jorge Silveira Filho MSc (2000-2006) (UFRJ/BR)
Gaspare Giuliano Elias Bruno PhD (2009-) (UFRJ/BR)
Guilherme de Melo B. Domingues PhD (2009-) (UFRJ/BR)
Guilherme Dutra Gonzaga Jaime PhD (2001-) (UFRJ/BR)
Hugo Hidequi Costa Sato MSc (2002-2007) (UFRJ/BR)
Isabela Barreto Duncan MSc (2001-2006) (UFRJ/BR)
Joao Carlos Guedes PhD (1994) (UFRJ/BR)
Jorge Allyson Azevedo MSc (2000-) (UFRJ/BR)
Kelvin de Freitas Reinhardt MSc (1999-2002) (UFRJ/BR)
Luiz Rogerio G. de Carvalho MSc (1997-1998) (UFRJ/BR)
Magnos Martinello MSc (1998-2001) (UFRJ/BR)
Morganna Carmem Diniz PhD (1996-1997) (UFRJ/BR)
Raphael S. de Moraes undergrad. (1998) (UFRJ/BR)
Sidney Cunha de Lucena PhD (1997-2004) (UFRJ/BR)
Yuguang Wu PhD (1994) (UCLA/USA)

iv

Copyright

c©1997-2005 LAND1 /UFRJ2 (Edmundo de Souza e Silva).
The copyright below applies to the free-of-charge distribution copies of

TANGRAM-II. Please send e-mail to support@land.ufrj.br concerning other types of li-
censes.

A non-exclusive, royalty-free license limited to use, copy, display, distribute without
charging for a fee, and produce derivative works of “TANGRAM-II” and its documentation
for not-for-profit purpose is granted to the party hereby receiving
“TANGRAM-II” (“Recipient”) provided that the above copyright notice, the original au-
thor’s names, and this permission notice appear in all copies made of “TANGRAM-II” and
both the copyright notice and this license appear in supporting documentation. All other
rights (including, but not limited to, the right to sell “TANGRAM-II”, the right to sell
or distribute derivative works of “TANGRAM-II”, the right to distribute “TANGRAM-II”
for a fee, and the right to include “TANGRAM-II” or derivative works of “TANGRAM-II”
in a for-sale product or service) are reserved by LAND/UFRJ.

TANGRAM-II is distributed in the hope that it will be useful for education and re-
search but WITHOUT ANY WARRANTY. TANGRAM-II is provided ”as is” without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Special Permissions to Commercial Linux OS Distributors
Special permission is granted by the authors of TANGRAM-II to any commercial Linux

distributor to redistribute TANGRAM-II in a for-sale Linux product provided that all the
conditions below are met:

1. The product is a Linux OS product (i.e., the product must either install or upgrade
the Linux kernel).

2. TANGRAM-II’s copyright is included in the product.

3. TANGRAM-II’s copyright, authors information, and contact information are kept
intact in the executable.

TANGRAM-II makes extensive use of TGIF (Tangram Graphic Interface Facility).
TGIF has its own copyright.

1 LAND: Laboratory for Modeling/Analysis and Development of Computer and Communications Sys-
tems.
URL: http://www.land.ufrj.br

2UFRJ: Federal University of Rio de Janeiro, Brazil

v

Preface

TANGRAM-II is an environment for computer and communication system modeling and
experimentation, developed for research and educational purposes. It provides a general
user interface based on an object oriented paradigm and a variety of solvers to obtain the
measures of interest. The environment also includes modules useful for computer network
experimentation, and multimedia tools to aid in the modeling process and collaborative
work.

The first version of TANGRAM was developed in Prolog [4] and a graphic interface
called TGIF was also implemented and became later a full fledge independent general pur-
pose sophisticated drawing tool [7]. From 1993 till 1994, several solvers were implemented,
including those for transient analysis and for models with “deterministic events”. The
development of the TANGRAM-II environment started in 1997 [6].

The tool was completely re-designed and among the new features we mention [20]: a
mathematical model generation implemented in C++; new constructs added to the lan-
guage; new analytical solvers; a new user interface implemented in Java; TGIF constructs to
facilitate the interaction with the new tool; an interactive simulator based on TANGRAM’s
paradigm. Recently, several modules have been implemented for computer network traffic
modeling and analysis [34]. Finally, a Whiteboard tool and a voice transmission tool are
being incorporated in the environment [9, 10, 27]. As soon as they are integrated with the
environment, these tools will facilitate the development of models by groups at different
locations.

The architecture of TANGRAM-II tool is shown in Figure 1.
If you want to know more information about our work visit our site at:

www.land.ufrj.br

vi

Traffic
Generation

Whiteboard

Voice
transmission

support tools

Modeling
Environment

Traffic
Engineering

steady state

transient

event driven

rare event

fluid

interactive

Simulators

animation

Measures
of

Interest

marginal
distributions

conditional
distributions

Analytical
Solutions

active
measurements

traffic
statistics

Figure 1: The Overview of the Architecture.

vii

Acknowledgments

Many people contributed to TANGRAM-II, since this project began. Most people worked
on several different parts of the tool. Some, though not directly involved with the tool,
gave us invaluable advice. We want to say THANKS to everyone. In particular the
project students were able to work together as a big family. It was a pleasure to see their
enthusiasm. Below we acknowledge the people who contributed to the tool and indicate
the main parts they were involved with.

The modeling paradigm was conceived by Dr. Steven Berson, Prof. Edmundo de Souza
e Silva and Prof. Richard Muntz in 1989. This paradigm was adopted by the TANGRAM
tool developed in 1989 and led by Richard Muntz.

The TANGRAM-II modeling environment was conceived by Prof. Edmundo de Souza
e Silva and Prof. Rosa Maria Leão. Prof. Richard Muntz participated as a major consul-
tant and in the discussions that led to the TANGRAM-II project. The current principal
investigators are Edmundo de Souza e Silva and Rosa Maria Leão.

The drawing interface adopted by TANGRAM-II is the same as that conceived for
TANGRAM (TGIF) and was developed by Dr. William Cheng. Several goodies were
included in TGIF to support the needs of TANGRAM-II. Dr. Cheng implemented the
modifications in TGIF and participated in the design discussions.

The first version of the mathematical model generator was implemented by Luiz Roge-
rio G. de Carvalho in 1997. This model was completely re-designed and re-implemented
by Daniel Ratton Figueiredo and Carlos F. de Brito. The re-design included many new
constructs that were added to the TANGRAM-II language, and reward-based measures.
The hash function and AVL tree was implemented by Magnos Martinello.

The analytical solvers were designed/coded by: Yuguang Wu, João Carlos Guedes,
Morganna Carmem Diniz, Edmundo de Souza e Silva, Carlos F. de Brito, João Abdalla
and Ana Paula Couto da Silva. The simulator was designed by Daniel Ratton Figueiredo,
and the FARIMA and FBM modules were implemented by Adenilson Raniery S. Pontes
(under the guidance of Prof. Rosangela Coelho).

The module that calculates/plots measures of interest based on state probabilities was
implemented by Antonio Mauricio N. Tartarini. The JAVA interfaces were designed and
implemented by Kelvin de Freitas Reinhardt, Adriane de Quevedo Cardozo, Flavio Pi-
mentel Duarte and Guilherme D. G. Jaime. They also have been debuggind and including
several new features since 2000. The interfaces between the solvers and the JAVA screens
was re-designed by Sidney Cunha de Lucena. The module used to visualize and permute
matrices was designed and implemented by Fernando Jorge Silveira Filho and Daniel Sadoc
Menasche.

The TANGRAM-II simulator (that includes support for rare event simulation) was
designed and implemented by Daniel Ratton Figueiredo. Kelvin de Freitas Reinhardt
implemented new features to support fluid simulation with the help of Bruno F. Martins
Ribeiro. The TANGRAM-II parser has been improved and maintained by Jorge Allyson

viii

Azevedo, Guilherme D. G. Jaime and Flavio Pimentel Duarte. Within the simulator,
the module that generates random numbers was rebuilt by Guilherme D. G. Jaime and
Fernando Fernando Jorge Silveira Filho. They also have been debuggind and including
several new features to the simulator since 2000.

The traffic modeling environment was implemented by Sidney Cunha de Lucena. The
traffic generator was implemented by Daniel Ratton Figueiredo, Carlos F. de Brito and
Magnos Martinello. Fabiano de Azevedo Portella participated in the implementation of its
user interfaces as well as the program for calculating traffic measures from the Tangram-
II traffic trace format. Magnos Martinello implemented the traffic generator interface to
ATM switches. Antonio A. de Aragão Rocha implemented new traffic generation features
and options that were added to the 2.1 version of Tangram-II. Hugo Sato worked on the
graphical interfaces for these new features.

The first version of the Whiteboard Tool was designed and implemented by Edmundo
de Souza e Silva, William Cheng, Renato Santana, Carlos F. de Brito, Magnos Martinello,
Raphael S. de Moraes, Denise Jorge de Oliveira and Flavio Pimentel Duarte. The develop
team of the second version of the Whiteboard Tool was: Edmundo de Souza e Silva, William
Cheng, Jorge Allyson Azevedo, Milena Scanferla and Daniel Sadoc.

Participated in the implementation of the voice tool, VivaVoz: Daniel Ratton
Figueiredo, Flavio Pimentel Duarte. Carolina Vielmond and Edmundo Grune de Souza e
Silva have implemented a graphical user interface for VivaVoz its voice mixer, a new trace
colector, and are now the tool’s current maintainers.

Ana Paula Couto da Silva was responsible for the examples and the TANGRAM-II tu-
torial, based on the contribution of many people, including those above. Daniel Figueiredo
was the project leader till mid 1999, and he still acts as a consultant. Kelvin de Freitas
Reinhardt, Adriane de Quevedo Cardozo, and Flavio Pimentel Duarte have been respon-
sible for putting version 1.2-6 together and several subsequent versions. For version 2.1,
Carolina Vielmond and Hugo Sato created the autotools scripts that enable the Tangram-II
source code to be compiled on several Linux plattaforms.

We would like to thank our colleagues from the ALMADEM and COMIT projects: Prof.
Berthier Ribeiro Neto, Dr. Jorge Moreira, Prof. Paulo Aguiar, Prof. Rosangela Coelho,
Prof. Jose Augusto Suruagy Monteiro, Prof. Sergio Campos, Prof. Nelson Fonseca, Prof.
Leana Golubchik and Prof. Don Towsley for the insightful discussions that led to many
enhancements of TANGRAM-II.

We are in debt to Prof. Virgilio Almeida and Mr. Celso Deusdeti Costa from Pro-
Tem/CC (CNPq) who believed in the work of our group. CNPq (ProTem, Pronex, Free
Software programs) and FAPERJ provided the main grants that supported our Labora-
tory.

Contents

1 Modeling with TANGRAM-II 1

1.1 Introduction . 1

1.2 Architecture . 2

1.3 The Model Specification Module . 4

1.4 The Mathematical Model Module . 5

1.5 Analytical Model Solution Module . 6

1.6 Measures of Interest Module . 6

1.7 Traffic Descriptors Module . 6

1.8 Simulation . 6

1.8.1 Traditional Discrete-Event Simulation 6

1.8.1.1 Batch Simulation Module 6

1.8.1.2 The Interactive Simulation Module 6

1.8.2 Rare Event Simulation . 8

1.9 Hidden Markov Models Module . 8

1.10 Where we Go Next . 8

2 Getting Started 9

2.1 Introduction . 9

2.2 Starting TANGRAM-II . 10

2.2.1 Step 1: Creating a Model . 10

2.2.1.1 The DOMAIN . 10

2.2.1.2 Specifying an object’s attributes 12

2.2.1.3 Connecting objects . 18

2.2.2 Step 2: Generating the State Space 19

2.2.3 Step 3: Solving the Model (Analytically) 20

2.2.4 Step 4: Obtaining the Measures of Interest 21

2.2.5 Reward Models . 24

2.2.6 Step 5: Simulating the Model . 25

2.3 Simulation Programming with Tangram-II 27

2.3.1 Messages Between Objects . 27

ix

x CONTENTS

2.3.2 New commands . 28

2.3.2.1 Obsolete commands . 28

2.3.2.2 Commands get ir() and set ir() 28

2.3.2.3 The special pseudo-event REWARD REACHED 29

2.3.2.4 The special reward rate reward sum 31

2.3.2.5 State Variables of type Float 32

2.3.2.6 Type cast . 33

2.3.2.7 Float/Integer Queue . 34

2.4 Where to Go Next . 34

3 Simulating with TANGRAM-II 35

3.1 Introduction . 35

3.2 The TANGRAM-II Simulator . 35

3.2.1 Models with Rewards . 35

3.2.2 Discrete Event Simulation . 36

3.2.2.1 Messages and Events . 36

3.2.2.2 Event Distributions . 37

3.2.2.3 Event Cloning . 38

3.2.2.4 Batch Simulation . 39

3.2.2.5 Parallelize Runs . 41

3.2.2.6 Configuring your Network of Workstations 41

3.2.2.7 Interactive Simulation . 41

3.3 Fluid Simulation . 45

3.3.1 On-off source . 45

3.3.2 3-state MMFS source . 46

3.3.3 Channel . 46

3.3.4 Sink . 47

3.3.5 server queue FIFO - CS . 47

3.3.6 server queue GPS - CS . 48

3.3.7 server queue GPS - CP . 48

3.3.8 fluid leaky bucket . 49

3.4 Where to Go Next . 49

4 Solvers 51

4.1 Introduction . 51

4.2 Steady-state analytical solvers . 51

4.2.1 Direct Methods - GTH and Block GTH 52

4.2.2 Iterative Methods - Jacobi, Gauss-Seidel, Power, and SOR 52

4.2.3 Non-Markovian Models . 54

4.3 Transient analytical solvers . 55

4.3.1 Point Probabilities . 56

CONTENTS xi

4.3.1.1 Uniformization Technique 56

4.3.1.2 Approximation Technique 57

4.3.1.2.1 Direct Method . 58

4.3.1.2.2 Iterative Method 59

4.3.2 Distributions . 60

4.3.2.1 Cumulative Reward Distribution 60

4.3.2.2 Cumulative Operational Time Distribution 60

4.3.3 Plotting 3D or 2D graphics for time-varying measures 61

4.3.4 Expected Values . 62

4.3.4.1 Expected Cumulative Rate Reward 62

4.3.4.1.1 Uniformization Technique 62

4.3.4.1.2 Approximation Technique 63

4.3.4.2 Fraction of Time the Accumulated Reward is above a Level 63

4.3.4.3 Expected Cumulative Impulse Reward 65

4.4 Where to Go Next . 65

4.5 References . 65

5 Matrix Visualization - State Ordering 67

5.1 Introduction . 67

5.2 How to use the Matrix Visualization - State Ordering 67

5.3 Where to Go Next . 70

6 Traffic Modeling 71

6.1 Introduction . 71

6.2 Traffic Modeling . 72

6.3 Connection Admission Control (CAC) Algorithms 75

6.3.1 Regulated Traffic Algorithm . 75

6.3.2 Non-Regulated Traffic Algorithm . 76

6.4 Where to Go Next . 76

7 Traffic Generator Tool 77

7.1 Introduction . 77

7.1.1 Using Tangram-II Traffic Generator 78

7.1.1.1 Probe Generation Direction 78

7.1.1.2 Probe Generation Model 79

7.1.1.3 Generating Traffic Features 80

7.2 Traffic Measures . 82

7.2.1 Measure Parameters . 82

7.2.2 Plotting the output of measures . 83

7.2.3 Histogram generation and MSE estimation 84

7.3 Measuring with Tangram-II Traffic Generator 84

xii CONTENTS

7.3.1 Measuring in One-way . 85

7.3.2 Measuring in Two One-way . 85

7.3.3 Measuring in Round Trip . 86

7.3.4 Estimating delay distribution . 88

7.4 References . 88

8 Hidden Markov Models Module 89

8.1 Introduction . 89

8.2 Creating Hidden Markov Models with TANGRAM-II 89

8.3 Loading a Hidden Markov Model into the HMM Module 94

8.4 Working with the HMM Module . 98

9 Examples 101

9.1 Introduction . 101

9.2 The MMPP/Leaky Bucket Model . 101

9.2.1 Model Description . 101

9.2.2 Solving the Model . 102

9.3 Model with a Deterministic Server . 104

9.3.1 Model Description . 104

9.3.2 Solving the Model . 104

9.4 Output queueing Model . 105

9.4.1 Model Description . 105

9.4.2 Solving the Model . 105

9.4.3 Measures of Interest . 105

9.5 Traffic Model . 109

9.5.1 Model Description . 109

9.5.2 Solving the Model . 110

9.6 Set Cumulative Rewards Values . 110

9.6.1 Model Description . 110

9.7 Event Cloning . 114

9.7.1 Model Description . 114

9.8 Multiple action . 116

9.8.1 Model Description . 116

9.9 Model with Symbolic Parameters . 118

9.9.1 Model Description . 121

9.9.2 Solving the Model . 121

9.10 Gated Queuing Vacation Model . 122

9.10.1 Model Description . 122

9.10.2 Solving the Model . 122

9.11 Vector Variable Model . 125

9.11.1 Model Description . 126

CONTENTS xiii

9.12 Simulation Model with Animation . 126

9.12.1 Model Description . 128

9.13 An Availability Model . 129

9.13.1 Model Description . 129

9.14 A Database Model . 130

9.14.1 Model Description . 130

9.15 Go Back N Protocol Model . 134

9.15.1 Model Description . 134

9.16 Multiplex Channel . 145

9.16.1 Model Description . 145

9.16.2 Solving the Model . 145

9.17 The Geometric-sized Bulk Arrivals Model 148

9.17.1 Model Description . 148

9.17.2 Recursion with Tangram messages 149

9.18 The Binomial-sized Bulk Arrivals Model . 151

9.18.1 Model Description . 151

9.18.2 Limited Recursion and Vanishing States 151

10 Whiteboard 155

10.1 Introduction . 155

10.2 Using TGWB . 156

10.2.1 Environment . 156

10.2.2 TGWB Configuration . 156

10.2.3 mcastproxy . 158

11 Modeling Tool Kit 161

11.1 Introduction . 161

11.2 Getting Started . 162

11.2.1 Setting Up MTK . 163

11.2.2 Starting MTK . 163

11.2.3 First Steps . 164

11.2.4 Creating and Working with Objects 166

11.3 MTK’s Main Commands . 170

11.3.1 Help . 170

11.3.2 List . 171

11.3.3 Set . 171

11.3.4 Show . 172

11.3.5 Quit . 172

11.4 Creating and Deleting Objects . 172

11.5 Available Plugins . 172

11.5.1 Intvalue Plugin . 173

xiv CONTENTS

11.5.1.1 Load . 174

11.5.1.2 Save . 174
11.5.1.3 Truncate . 174
11.5.1.4 Autocorrelation . 175

11.5.2 Floatvalue Plugin . 175
11.5.2.1 Load . 176

11.5.2.2 Save . 176
11.5.2.3 Truncate . 177
11.5.2.4 Autocorrelation . 177

11.5.3 Hidden Markov Model Plugin . 178
11.5.3.1 Load . 179

11.5.3.2 Save . 179
11.5.3.3 Normalize . 179
11.5.3.4 Model Parameter Estimation 179
11.5.3.5 Likelihood . 180

11.5.3.6 Viterbi . 180
11.5.3.7 Simulate . 181
11.5.3.8 Forecast . 181
11.5.3.9 Symbol Value Time Average 181
11.5.3.10 Symbol Value Sum Distribution 182

11.5.3.11 State Probability . 182
11.5.3.12 Set Full Structure . 182
11.5.3.13 Set Coxian Structure . 183
11.5.3.14 Set Quasi Birth-Death Structure 183

11.5.3.15 Set Gilbert Structure 183
11.5.3.16 Fix Full Structure . 183
11.5.3.17 Fix Coxian Structure . 184
11.5.3.18 Fix Quasi Birth-Death Structure 184
11.5.3.19 Fix Gilbert Structure 184

11.5.3.20 Set Error Tolerance Value - Epsilon 185
11.5.3.21 Import From Tangram-II 185

11.5.4 Hierarchical Gilbert Hidden Markov Model Plugin 186
11.5.4.1 Load . 188
11.5.4.2 Save . 188

11.5.4.3 Normalize . 188
11.5.4.4 Model Parameter Estimation 189
11.5.4.5 Likelihood . 189
11.5.4.6 Viterbi . 190

11.5.4.7 Simulate . 190
11.5.4.8 Symbol Value Time Average 190
11.5.4.9 Symbol Value Sum Distribution 191

CONTENTS xv

11.5.4.10 State Probability . 191

11.5.4.11 Set Full Structure . 191

11.5.4.12 Set Coxian Structure . 192

11.5.4.13 Set Quasi Birth-Death Structure 192

11.5.4.14 Fix Full Structure . 192

11.5.4.15 Fix Coxian Structure . 193

11.5.4.16 Fix Quasi Birth-Death Structure 193

11.5.4.17 Set Error Tolerance Value - Epsilon 193

11.5.4.18 Import From Tangram-II 193

11.5.5 Hierarchical General Hidden Markov Model Plugin - Fixed Batch . . 195

11.5.6 Hierarchical General Hidden Markov Model Plugin - Variable Batch 198

11.6 Creating Your Own Plugin . 201

11.7 Integration with TANGRAM-II . 201

11.7.1 Using MTK in a Tangram-II Simulation 201

11.7.1.1 mtk create: Creates Objects 202

11.7.1.2 mtk run: Executes Objects Methods 203

11.7.1.3 mtk get: Gets Object Attribute Value 203

11.7.1.4 mtk set: Sets Object Attribute Value 204

11.7.1.5 mtk copy: Copies’ Objects 205

11.7.1.6 mtk delete: Deletes Created Objects 206

11.7.2 Initializing MTK Parameters . 206

11.7.3 Compilation Directives . 207

11.7.3.1 #ifdef . 207

11.7.3.2 #include . 207

11.7.4 TGIF Multi-Page Model . 207

12 FreeMeeting 209

A Output File Formats 211

A.1 Introduction . 211

A.2 Model Environment Module . 211

B How to Create a New Object 219

B.1 Introduction . 219

B.2 Creating a New Object . 219

B.3 Creating a New Model . 220

C How to Connect Ports 221

C.1 Introduction . 221

C.2 Connecting two ports . 221

C.3 Connecting more than two ports by a broadcast link 222

xvi CONTENTS

D The Syntax Used in The Models 225
D.1 Introduction . 225
D.2 Syntax . 225

D.2.1 Attributes . 225
D.2.2 C statements . 228
D.2.3 Other statements . 228
D.2.4 Functions . 229
D.2.5 Some reserved words . 229

List of Figures

1 The Overview of the Architecture. vi

1.1 The Modeling Environment. 3
1.2 TGIF - TANGRAM Graphic Interface Facility 4

1.3 Template to define a new object type. 5
1.4 The Analytical Solvers. 7

2.1 The Main Screen . 10
2.2 The Modeling Environment Module . 11

2.3 TGIF - TANGRAM Graphic Interface Facility 11
2.4 Template to define a new object type. 12
2.5 The packet source object type. 15
2.6 Single and Broadcast links. 18
2.7 The M/M/1/k model. 19

2.8 The Mathematical Model Module. 20
2.9 Steady State Analytical Methods. 21
2.10 The Measures of Interest Module. 22
2.11 The plot generated by the PMF Module. 23
2.12 The plot generated by the PMF Module. 23

2.13 The plot generated by the PMF Module. 24
2.14 The model with Rewards . 26
2.15 The Simulation Module . 26
2.16 Triggering on a c.r. 29
2.17 Illustration of bound affecting rewards. 33

3.1 File distribution trace format . 38
3.2 The Batch Simulation Module . 39
3.3 Reward Options Window . 40
3.4 The Interactive Simulation Module. 42

3.5 The box used to control interactive simulation 44
3.6 TGIF interface - Progress Indicator - Interactive simulation 44
3.7 On-Off source. 45

xvii

xviii LIST OF FIGURES

3.8 3-state MMFS source . 46

3.9 Channel . 47

3.10 Sink . 47

3.11 server queue - FIFO . 47

3.12 server queue - GPS-CS . 48

3.13 server queue - GPS-CP . 49

3.14 server queue - GPS-CP . 49

4.1 The Stationary Exact Methods. 53

4.2 The Stationary Iterative Methods. 53

4.3 Non-Markovian Models. 54

4.4 The Transient Methods. 56

4.5 Point Probabilities Interface - Uniformization Technique. 57

4.6 Point Probabilities Interface - Approximation Technique (Direct). 58

4.7 Point Probabilities Interface - Approximation Technique (Iterative). 59

4.8 Cumulative Reward Distribution Interface 61

4.9 Cumulative Operational Time Distribution Interface 62

4.10 Expected Cumulative Rate Reward Interface - Uniformization Technique. . 63

4.11 Expected Cumulative Rate Reward Interface - Approximation Technique. . 64

4.12 Expected Cumulative Rate Reward Interface - Approximation Technique. . 64

4.13 Expected Cumulative Impulse Reward Interface - Uniformization Technique. 65

5.1 The Matrix Visualization - States Permutation Interface. 68

5.2 The Matrix Visualization Interface. 69

6.1 Interface to obtain traffic statistics from a trace 73

6.2 Interface to obtain traffic statistics from a markovian model 74

6.3 Interface of Tangram-II to CAC algorithms 76

7.1 Interface Tangram-II to Traffic Generator. 78

7.2 Tangram-II Traffic Generator Structure. 79

7.3 Generation mode - min . 81

7.4 Generation mode - max . 81

7.5 Interface of Tangram-II to IP traffic measures 83

7.6 Interface of Tangram-II to Plot statistics measures 84

7.7 Interface of Tangram-II to Histogram genaration and MSE estimation . . . 85

7.8 PMF of loss (A) and success (B) of videos packets. 86

7.9 Delay calculation of probes generation . 86

7.10 Round Trip Delay from packets generated at the same instant 87

7.11 Comparison between Delay calculations: (A) PMF, (B) CDF. 87

7.12 Estimating distribution of delay tried by probes 88

LIST OF FIGURES xix

8.1 Opening Tangram-II’s Model Specification Module 90

8.2 Tangram-II’s Markov Chain object. 92

8.3 (a)Tangram-II model with the Markov Chain object, and (b) the partial upper-level Markov chain created

8.4 (a)Tangram-II model created. (b)Hierarchical Gilbert hidden Markov model build with the model of

8.5 Mathematical Model Generation Module (a) selection button; (b) state space generation interface. 95

8.6 HMM Module (a) selection button; (b) model selection interface. 95

8.7 HMM Module (a) state variable selection interface; (b) additional parameter specification interface.

8.8 HMM Module (a) method’s and algorithm’s interface; (b) chain structure visualization. 98

9.1 The MMPP Model . 102

9.2 The Point Probabilities Method. 102

9.3 The Buffer size PMF . 103

9.4 The Deterministic Server Model . 104

9.5 The Outputqueueing Model . 106

9.6 The Measures of Interest module. 107

9.7 The PMF of the Switch 2x2.queue 1 object. 108

9.8 The Traffic Model. 109

9.9 Set Cumulative Rewards Values. 111

9.10 The Packet Source object (Set Cumulative Rewards Values). 112

9.11 The Server Queue object(Set Cumulative Rewards Values). 113

9.12 Event Cloning Model. 114

9.13 The ON OFF Source object (Event Cloning Model). 115

9.14 The Infinite Server object (Event Cloning Model). 115

9.15 The Multiple Action Model. 117

9.16 The Poisson Source object (Multiple Action Model). 118

9.17 The Split object (Multiple Action Model). 119

9.18 The Queue object (Multiple Action Model). 120

9.19 The MM1k Model with Symbolic Parameters. 121

9.20 The Symbolic Parameters Window. 122

9.21 The Gated Queueing Vacation Model. 123

9.22 The Gated Queue object (Gated Queueing Vacation Model). 123

9.23 The Token Parser object (Gated Queueing Vacation Model). 124

9.24 The Vector Variable Model. 126

9.25 The Poisson Source object (Vector Variable Model). 127

9.26 The Queue object (Vector Variable Model). 127

9.27 The Simulation Model with Animation. 129

9.28 The Availability Model. 131

9.29 The System 1 object (Availability Model). 132

9.30 The Database Model. 135

9.31 The Processor object (Database Model). 136

9.32 The Repair object (Database Model). 137

xx LIST OF FIGURES

9.33 The Database object (Database Model). 138
9.34 The Go Back N Model. 140
9.35 The Sender object (Go Back N Model) Model 1. 141
9.36 The Channel object (Go Back N Model). Model 1 142
9.37 The Receiver object (Go Back N Model) Model 1. 143
9.38 The Multiplex Channel Model. 146
9.39 The Queue Object. 147
9.40 The Geometric bulk arrivals model. 149
9.41 The Geometric Bulk object. 150
9.42 The recursion tree generated by Geometric Bulk object from the initial state.150
9.43 The Binomial bulk arrivals model. 151
9.44 The Binomial Bulk object. 152
9.45 The Binomial bulk generation process from the initial state. 153
9.46 Transitions generated by the arrival event at the initial state. 154

10.1 TGWB: Tangram Whiteboard interface. 155
10.2 mcastproxy environment example . 158

11.1 MTK block architecture . 162
11.2 MTK interfaces: (a) shell interface; (b) graphical interface. 164
11.3 Example of a hierarchical HMM with 3 hidden states, in which a Gilbert Markov chain is asso
11.4 Example of a hierarchical general HMM with 2 hidden states and 4 observation symbols.195
11.5 Example of a hierarchical general HMM with variable batch size, 2 hidden states and 4 observ

Chapter 1

Modeling with TANGRAM-II

1.1 Introduction

System modeling and analysis is an important part of the design process of computer and
communication systems in which one evaluates the efficacy of the system under consider-
ation and compares different design alternatives. Over the last two decades, several tools
have been designed to aid the user in developing performance and dependability models
of those systems. Some tools are tailored to specific application domains, such as queu-
ing network models, and availability modeling. Other tools allow specification of general
modeling domains such are those based on Petri nets, those based on formal description
language, and those that adopt a user interface description language specially developed
for the tool. The tools also vary in terms of their user interface, the type of measures that
can be obtained, and the analytic and/or simulation techniques that are available to solve
the models.

During the development of a modeling tool, many issues must be addressed to facilitate
the design process. On one hand, the user interface should be tailored to a particular
application domain with which the user is concerned. For instance, if the user is developing
an availability model, then the tool allows him/her to specify system components that can
fail, interactions between components, repair policies, operational criteria, etc.

Most real system models have large space cardinalities, and so the main issue is how to
deal efficiently with such large models. This problem influences both the generation phase
of the state transition matrix, and the implementation of the solvers. The identification
of special structures in the model is also a desirable feature. The type of model structure
often influences the choice of the most effective solution technique.

Yet another issue is related to the interaction between the interface and the solvers.
Several measures require special information to be provided by the user. In availability
modeling, for instance, the user must specify the conditions in which the system is consid-
ered operational. In performability modeling, reward rates must be specified for the states.

1

2 CHAPTER 1. MODELING WITH TANGRAM-II

If the model to be solved is non-Markovian, then depending on the solution technique
used the interface has to provide more information than that required solving Markovian
models.

TANGRAM-II was developed at Federal University of Rio de Janeiro (UFRJ), with
participation of UCLA/USA and other Universities, for research and educational purposes
and deals with several of the issues mentioned above. It combines a sophisticated user
interface and new solution techniques for performance and availability analysis.

1.2 Architecture

In the paradigm used in the tool, the system modeled is represented by a collection of
objects which interact by sending and receiving messages. The internal state of each
object is represented by a set of integer-valued variables.

Events and messages and their associated conditions and actions define the behavior of
an object. Events are generated spontaneously by an object, provided that the conditions
specified when the object was defined are satisfied. These conditions are Boolean expres-
sions evaluated using the current state of the object. Messages are just an abstraction
used to represent the interaction among objects, and are delivered (and reacted to) in zero
time. When either an event is executed or a message is received, a set of actions specified
by the user is taken with a given probability distribution. As a result of an action taken,
the object’s state may change and messages may be sent to other objects in the model.A
detailed explanation of how messages and events are executed in the Tangram-II simulator
is given in section 4.

The tool provides a graphical interface to aid the user when creating a new object
type or defining a model. It is based on the public domain TANGRAM Graphic Interface
Facility TGIF, developed at UCLA [7].

The current version is implemented in C/C++ and has several solvers for transient and
steady state analysis of performance and availability metrics. A robust simulator is also
part of the solution methods and supports rare event simulation.

In order to create a new model, the user may employ different types of objects that
can be retrieved from a library previously created, or he/she may build new object types
from scratch. The objects are parameterized and instances can be declared with actual
parameters specified for each instance.

The user starts building the model of a system by instantiating objects from the Object
Library using the Modeling Environment module, provided that all types of objects needed
are already in the library. Otherwise, new object types are first created and stored in the
Object Library. Then, the objects are parsed and data structures are created for each object
instance. New object types are defined and specified in terms of a graphical representation
and their associated behavior. The interface of the tool displays a template to aid the user
in the construction of a new object type.

1.2. ARCHITECTURE 3

After the model is built, mathematical description of the model can be generated (e.g
a Markov Chain) and an appropriate solution technique can be used to obtain steady state
and/or transient measures of interest. If the model is not Markovian or cannot be handled
by the analytical solvers, then the simulator can be used to obtain different measures of
interest.

Figure 2.2 shows the Modeling Environment Interface. The icons on the left hand side
of the figure show the options available to the user:

1. Specification of a model (Model Specification Module);

2. Mathematical model generation (Mathematical Model Module);

3. Analytical solution of the model (Analytical Model Solution Module);

4. Measures-of-interest generation (Measures of Interest Module);

5. Traffic descriptors computation (Traffic Descriptors Module);

6. Simulation (Simulation Module);

7. Hidden Markov Models (HMM Module).

Figure 1.1: The Modeling Environment.

4 CHAPTER 1. MODELING WITH TANGRAM-II

1.3 The Model Specification Module

In this module the objects are created and the model is specified using TGIF [7]; see Figure
1.2.

Figure 1.2: TGIF - TANGRAM Graphic Interface Facility

To create a new object type, the tool displays a template as shown in Figure 1.3. The
template shows the state variable and all parameter types that can be defined by the user,
and displays a set of fields to be filled in by the user indicating the events and messages of
the object type and the associated conditions and actions. The object also may have an
attribute called “rewards” that can be used to obtain reward measures using appropriate
analytical or simulation solution methods. The box in the left-hand corner of the template
can be modified to create an icon for the object type being defined.

After all objects are created, it is necessary to interconnect them using ports. Through
these ports, messages are exchanged between objects. All variables are either state vari-
ables, constants or parameters. State variables are of type integer or integer-valued vector.
Constants can be of type integer, float, object, or port. All state variables and constants
must be initialized before the mathematical model is generated. Parameters need be ini-
tialized only before the analytical solution (they are not used in simulation).

1.4. THE MATHEMATICAL MODEL MODULE 5

Declaration=name=UNIQUE_NAME

Events=

Messages= Rewards=

Initialization=

Watches=

Figure 1.3: Template to define a new object type.

1.4 The Mathematical Model Module

The Mathematical Model Module explores reachable states in the model and calculates the
transition rates between any two tangible states. When a state is generated, the generator
must determine if it was previously explored, or if it is a new state. TANGRAM-II uses
a hashing function to uniquely map states into identifiers, in order to save storage. The
technique used identifies a lexicographic order for the state vectors and the state space is
divided into sets according to this ordering. Then, a table that stores the number of states
in each set is built. From this table, one can uniquely map the state vectors into identifiers
with little effort.

The user specifies an initial state for each object. The state transition matrix generator
finds a list of all events that can fire from that state. One event is then chosen to fire,
and all messages that can be sent after an action is executed for that event, are found.
All states with pending messages (yet to be delivered) are vanishing, and are not part of
the final state space of the model. The algorithm recursively finds all states (vanishing or
tangible) reachable from the current state, and the new tangible states found are inserted
in the list of non-explored states (depth-first search).

The data structures generated for the class of non-Markovian models that can be solved
by the tool are more complex than those needed for Markovian models, since many chains
must be identified and generated as required by the solution method. Roughly, the genera-
tor first finds all tangible states assuming that all transitions in the model are exponential.
Then, for non-exponential events defined by user, the generator finds one or more Markov
chains associated with them. For details of the solution technique see [19].

6 CHAPTER 1. MODELING WITH TANGRAM-II

1.5 Analytical Model Solution Module

Several solution techniques for obtaining steady state and transient measures are currently
available in the TANGRAM-II environment. (See [12, 13, 18, 13] and also [45, 23] for
references on some of the techniques implemented.) Since the tool was designed mainly to
be used for research and education, a few traditional solution methods were implemented,
as well as recently-developed algorithms. The tool provides several graphical interfaces to
allow the specification of parameter values and to choose the appropriate solution technique.
The main analytical solvers implemented in TANGRAM-II are shown in Figure 1.4.

1.6 Measures of Interest Module

In this module, several measures of interest can be evaluated and plotted. These include
distributions of functions of state variables, and marginal and conditional probabilities.

1.7 Traffic Descriptors Module

This module allows the user to compute a few first- and second-order statistical measures
(traffic descriptors) from a Markov reward model of a traffic source, or from a trace. The
descriptors which can be calculated are: mean, variance, peak rate, burstiness, index of
dispersion (IDC(t)), autocovariance(t), autocorrelation(t).

1.8 Simulation

A model can be solved by an analytical method or by simulation.

The tool supports traditional discrete-event simulation, which includes batch, interac-
tive, and rare-event simulation.

1.8.1 Traditional Discrete-Event Simulation

1.8.1.1 Batch Simulation Module

In batch simulation the user specifies parameters such as number of runs, and stopping
criteria such as simulation time and number of transitions.

1.8.1.2 The Interactive Simulation Module

If the user chooses to perform interactive simulation, the simulator communicates with
the graphic interface using sockets. The simulator updates the state variables at each
simulation step through the socket API. Then the user can visualize the evolution of the
state variables after the execution of a specified number of steps.

1.8. SIMULATION 7

STEADY STATE
 ANALYSIS

 NON-
MARKOVIAN
 MODELS

ITERATIVE
 METHODS

power jacobi sor gauss-sidel

 DIRECT
METHODS

GTH block
GTH

TRANSIENT
 ANALYSIS

 POINT
PROBABILITIES

 EXPECTED
 VALUES

 expected cumulative
 rate reward

 fraction of time the
accumulated reward is
 above a level

DISTRIBUTIONS

bounded
cumulative
reward

operational time
and related measures

Uniformization Approximation

 expected cumulative
 impulse reward

Uniformization Approximation

Figure 1.4: The Analytical Solvers.

8 CHAPTER 1. MODELING WITH TANGRAM-II

1.8.2 Rare Event Simulation

Rare event simulation is implemented using the splitting/RESTART technique.

1.9 Hidden Markov Models Module

This module allows the user to work with hidden Markov models (regular or hierarchi-
cal), using the various methods and algorithms implemented therein, such as parameters
estimation algorithms and forecasting techniques.

Tangram-II’s Model Specification Module is used to design the model’s chain structure.
The HMM Module, then, loads this structure, and allows the user to specify any additional
paramenter that the model may need. Once these specifications are done, the HMM model
is created, and ready to be worked with.

1.10 Where we Go Next

In this section we presented a brief overview of the TANGRAM-II Modeling Environment.
In the next chapter we will show how to use all features available in the Modeling Envi-
ronment through a simple example.

Chapter 2

Getting Started

2.1 Introduction

The purpose of this chapter is to introduce the user to modeling process with TANGRAM-II
using a very simple example. By following this tutorial, the user will be able to:

• Construct a model based on the TANGRAM-II object-oriented paradigm.

• Specify and solve the model, and obtain the measures of interest.

The first example we choose to model is the M/M/1/k queueing system. In this system
there is a maximum number of customers that may be stored in a queue. This model has
two types of objects: a source of packets, and the queue with its server. Objects of each
type will be instantiated to create the system model.

The source object generates packets to the server object from a Poisson distribution
with rate λ . The server object has a limited queue, and serves packets in FCFS order with
exponentially-distributed service time. If a packet arrives at the server when the queue is
full, the packet is dropped.

In the next sections we will present each one of the steps to create/evaluate a model:

• First we create the model with the Model Specification Module. In this step, the
objects and the messages exchanged between them are defined.

• Next, we generate the state transition rate matrix. The Mathematical Model Module
is used for that.

• Then we solve the model with the Analytical Model Solution Module and evaluate
some measures of interest with the Measures of Interest Module.

• Finally, we simulate the model using the Simulation Module.

9

10 CHAPTER 2. GETTING STARTED

2.2 Starting TANGRAM-II

Start TANGRAM-II by typing tangram2 on the command line. The graphical interface
appears as shown in Figure 2.1.

Figure 2.1: The Main Screen

To create and analyze a model, choose “Modeling Environment”. The graphical inter-
face appears as shown in Figure 2.2.

2.2.1 Step 1: Creating a Model

To create a model, choose the “Model Specification Module”. In this step, we use the
TGIF (TANGRAM Graphic Interface Facility), as shown in Figure 2.3.

2.2.1.1 The DOMAIN

First, we must choose the DOMAIN in which we want to work. A DOMAIN stores the
types of objects that were created. For instance, we may create a DOMAIN that contains
different service stations, each implementing a different queueing discipline.

To choose a DOMAIN, click on Special and, then on DOMAIN → Change Domain. A
window with several options appears. Choose TANGRAM2 OBJECTS.

2.2. STARTING TANGRAM-II 11

Figure 2.2: The Modeling Environment Module

Figure 2.3: TGIF - TANGRAM Graphic Interface Facility

12 CHAPTER 2. GETTING STARTED

After this, we are able to use objects types stored in the library. If you can’t see any
Tangram-II objects in the list, and in the messages box of the main Tgif window there is
an error like “path can’t be created”, it means that you need to set up correct Domain
paths. One way to do that is by setting them into your .Xdefaults config file. In your
home directory, open or create the .Xdefaults file (plain text) and put these lines at the
end of the file:

Tgif*MaxDomains: 1

Tgif*DefaultDomain:0

Tgif*DomainPath0: TANGRAM2:/usr/local/Tangram2/Domain/TANGRAM2_OBJECTS:.

We can also create a new type of object from an object template and store it in a new user
DOMAIN. To do that, just increment the MaxDomains variable we just created inside the
.Xdefaults file and create a new variable DomainPath with the new path and name you
want to add as your newly-created user domain.

2.2.1.2 Specifying an object’s attributes

To choose the object template click on Special/Instantiate. A window with the objects
appears. Choose Obj Template.sym and click on the interface. The object template is
shown in Figure 2.4.

Declaration=name=UNIQUE_NAME

Events=

Messages= Rewards=

Initialization=

Watches=

Figure 2.4: Template to define a new object type.

As shown in Figure 2.4, there are six attributes that describe the object: Declaration,
Watches, Initialization, Events, Messages, and Rewards.

Declaration is used to specify the pre-defined types: state variables, constants and pa-
rameters. Constants can be of type Integer, Float, Object or Port; parameters can
be of type Integer or Float.

2.2. STARTING TANGRAM-II 13

1. State variables can be of type Integer or Float. In each case, the following
“flavors” are allowed:

(a) Scalar. For example if we have a state variable named Status, it will be
able to have the value 10 if its type is Integer, or 3.6 if its type is Float.
Scalar state variables can only have non-negative values. (For the use of
Float state variables see §2.3.2.5.)

(b) Vector. The variable is represented by an array of Integer or Float values.
Note: if we have a Integer vector, the maximum size allowed is 255. A
Float vector has a maximum size of 127.

(c) Queue. This type is similar to the Vector type, but the user can specify the
desired size. There is no maximum size.

2. Constants and parameters can be of type Integer or Float. Note: We can
represent the Integer and Float types in scientific notation. E.g. Integer: 1e+10,
1E+05; Float: 1.0e+10, 1.0e-10, 1.0E+10, 1.0E-10.

3. Object : used to make references to others objects in the model;

4. Port : used to define connection ports between objects. Objects can only com-
municate (via the message mechanism) if they have ports that are interconnected.
Note: port is a reserved word, so an object’s port cannot be simply named
“port”.

Initialization is used to initialize constants and state variables to numerical values.

Events is used to specify all the events in an object. An event is defined by a name,
a distribution type, and its parameters. An event must also have a condition, and
at least one action associated with it. Note that one or more messages can be sent
during the execution of an action.

Watches lists all declared state variables. If we simulate the model interactively (see
§3.1), the value of each watched variable is displayed at each step.

Messages is used to declare the messages that can be received. When a specific message is
received, an action associated with that message is taken. Note: Messages arriving
at a port are always received. There are no conditions associated with messages.

Rewards is used to specify rate or impulse rewards. Rewards are used in the simulation
and in the analytical transient solution.

We start by creating the packet source object type. Recall that the behavior of an
object is represented by events, and messages and their associated actions.

The syntax of an event is as follows:

14 CHAPTER 2. GETTING STARTED

event = event_name(distribution, parameters of distribution);

condition =

action = {

...

};

Important: conditions are boolean expressions over state variables only. (The user can
specify the condition to be always true. In this case, the reserved word TRUE is used).

The single event of the packet source object is Packet Generation. The distribution
of the event is defined by the reserved word EXP which indicates an exponential distribution.
The rate at which this event occurs is defined by the constant pkt rate. In this case, there
are no conditions for this event to occur, and this is specified by the keyword TRUE. Each
time this event triggers, the action specified is executed. In this case, a message is sent.
The message sent has the following syntax: msg(name of port, object, data).

To edit an attribute, in this case the Events attribute, you must right-click exactly on
the object, select Edit Attribute in Editor and then select the attribute you want to
edit. In our case, we will edit the Events attribute. (You can also change the default editor,
setting your preferred one in your .Xdefaults file, adding the command Tgif*Editor:

YOUR EDITOR HERE.) The syntax of this event is as follows:

Events =

event = Packet_Generation (EXP, pkt_rate)

condition = (TRUE)

action = {

msg(port_out,all,0);

};

There is another way to edit object attributes in Tgif. It is possible to edit more than
one attribute in the editor window. To access this feature you should use the right mouse
button over the Tangram-II object and choose the Edit Attribute Group In Editor

option. The available groups will be presented in the sub-menu.
Users can create their own attribute groups by editing the .Xdefaults file. For instance,

to create an attribute group called TANGRAM-II to edit all Tangram-II attributes at once,
do the following:

1. Add the following lines to the .Xdefaults file:

Tgif.MaxAttributeGroups: 1

Tgif.AttributeGroup0: TANGRAM-II:Declaration:Events:Messages

:Rewards:Initialization:Watches (in the same line)

2. Reload your X configuration with the command xrdb /.Xdefaults.

2.2. STARTING TANGRAM-II 15

3. Restart Tgif.

The option Tgif.MaxAttributeGroups configures the number of attribute groups available.
The option Tgif.AttributeGroupX is used to define the attribute group X. An attribute
must be defined as:

Attribute_Name:<Attribute1:Attribute2:...:AttributeN>

Important: all is a reserved word reserved word!all that indicates the message is sent to
all objects connected to the the port. The Messages attribute is empty because no messages
are received by a packet source object.

The next step is to declarate the state variables and constants. This object type does
not have state variables. It is a Poisson source that generates packets continuously. Note

that at least one object must have a state variable in the model. Otherwise, the model can
not be solved.

We must declare the variables used in the object. The Declaration attribute for the
packet source is:

Declaration=

Const

Float: PKT_RATE;

Port: PORT_OUT;

Now, we must include all constants in the Initialization attribute.

Our first object type is ready! Figure 2.5 shows the complete packet source object
type specification.

Declaration=
 Const
 Float: pkt_rate;
 Port: port_out;

name=UNIQUE_NAME

Events=

 event= Packet_Generation(EXP, pkt_rate)
 condition= (TRUE)
 action= {
 msg(port_out, all, 0);
 };

Messages=

Rewards=

Initialization=
 port_out=
 pkt_rate=

Watches=

Figure 2.5: The packet source object type.

16 CHAPTER 2. GETTING STARTED

After specifying the packet source object type, now we will describe the server ob-
ject type (queue plus server). We must follow the same steps. First, we will choose the
object template as before.

The next step is to define the state variable of the server (this should be the first step
because the condition of the single event is based on the state variable). For this object type,
the state is the queue. We can declare this state variable using the Declaration attribute.

The single event of the server object is named Packet Service. Each time this event
triggers, the action specified is executed. In this case a packet is removed from the queue.
The mean rate at which this event occurs is defined by the constant service rate. The
Packet Service event can only occur if the queue is not empty (queue > 0) . The dis-
tribution of the event is exponential. When the event Packet Service fires, a packet is
removed from the queue. An action is specified using C-like constructs (see §D.2 in the
appendix for the syntax).

Events =

event = Packet_Service (EXP, SERVICE_RATE)

condition = (Queue > 0)

action = {

int q;

q = Queue -1;

set_st ("Queue",q);

};

Important: In an action , state variables can be used in the right-hand side of assignment
expressions, but they cannot be modified except using the set st() (set state) function.
This function assigns the value of a float or an integer constant to the specified state
variable, and should be used only at the end of an action. This indicates that all state
variables remain at the same value throughout the execution of an action. Their values
are changed at once after the execution of the user code. The syntax is set st (“state
variable”, integer variable). If the action is empty, it is necessary to put a ; before the
set st statement.

A server object type receives messages from other objects. The message represents the
arrival of a packet to the server. In this model, the message is received from port port in

If the queue is not full, the packet is stored in the queue. Otherwise the packet is dropped
(no action is taken).

Messages =

msg_rec = PORT_IN

action = {

int q;

q = Queue;

if (Queue < queue_size)

2.2. STARTING TANGRAM-II 17

q = Queue +1;

set_st("Queue", q);

};

In this object type, the constant PORT IN is used to receive messages. The constant
queue size is used to represent the maximum queue size. The constant SERVICE RATE

is used to represent the mean service rate.
We must declare the constants using the Declaration attribute and then, all constants

and state variables should be included in the Initialization attribute.

Declaration=

State Var

Integer: Queue;

Const

Float: SERVICE_RATE;

Integer: QUEUE_SIZE;

Port: PORT_IN;

Our second object type is ready! With the two object types defined above we are able to
create an M/M/1/k model. There is one instance of each object type in this model. When
a new object is instantiated, an unique name must be given together with initial values for
all state variables and constants. In this example, the objects are named Poisson Source

and Server Queue. Note: the Tgif tool has a maximum length of 255 for names of objects
and variables. The other limit is the total number of bytes in each line in Tgif editor: 512
bytes.

For the constants and the Server Queue state variable, we use the following values:

Poisson_Source:

* Initialization

PKT_RATE= 80

PORT_OUT= wire

Server_Queue:

* Initialization

Queue = 0

SERVICE_RATE = 100

QUEUE_SIZE = 100

PORT_IN = wire

* Watches

Queue

Note that the port variable of each object receives the same name wire. This indicates
that the two ports are connected.

18 CHAPTER 2. GETTING STARTED

The complete behavior of the model is as follows: with rate 80 packets per time unit,
the source sends a message to the defined port (wire). All objects that are listening on this
port receive this message. When received by the Server Queue, this message increments
the queue size, if and only if its queue is less that the maximum specified value (100 in this
example). With rate 100 packets per time unit, the queue is served if and only if it is not
empty.

2.2.1.3 Connecting objects

We can connect objects using either a single link or a broadcast link: see Figure 2.6. In each
case the connected ports are assigned the same name, the name of the wire that connects
the ports. Objects connected via a broadcast link can either send messages to all objects
using the reserved word all, or to a specified object. Note that the broadcast message
sent is not received by the object that generated the message. In order to send a message
to a specific object, the name of a variable must be used (instead of all). Of course, this
variable must be initialized with the name of an object that will receive the message when
the object is instantiated.

The connection between two or more objects can be done automatically. The
TANGRAM2 OBJECTS domain has a port object named port.sym that is used in this connec-
tion. When we use this feature, the name of all ports connected is set automatically. This
feature is particularly useful when the model is very large. The user can set automatically
all ports in the model, or do it by hand, initializing the name of each declared port, using
the Initialization attribute. See more details in §C.2.

single link

brodcast link

Figure 2.6: Single and Broadcast links.

2.2. STARTING TANGRAM-II 19

Our first model is presented in Figure 2.7.

M

Declaration=
 Var
 State: Queue;

 Const
 Integer: QUEUE_SIZE;
 Port: PORT_IN;
 Float:SERVICE_RATE;

name=Server_Queue

Events=
 event=Packet_Service (EXP, SERVICE_RATE)
 condition= (Queue > 0)
 action= { int q;
 q = Queue - 1;
 set_st("Queue", q);
 };

Messages=
 msg_rec=PORT_IN
 action= { int q;
 q = Queue;
 if (Queue < QUEUE_SIZE)
 q = Queue + 1;
 set_st("Queue", q);
 };

Rewards= Initialization=
 Queue = 0
 QUEUE_SIZE = 100
 PORT_IN = wire
 SERVICE_RATE = 80

Watches=
 Queue=0

P

Declaration=
 Const
 Float: PKT_RATE;
 Port: PORT_OUT;

name=Poisson_Source

Events=

 event= Packet_Generation(EXP, PKT_RATE)
 condition= (TRUE)
 action= {
 msg(PORT_OUT, all, 0);
 };

Messages=

Rewards=

Initialization=
 PORT_OUT=wire
 PKT_RATE=80

Watches=

Figure 2.7: The M/M/1/k model.

In Figure 2.7 the objects have a different format. These objects (Server Queue and
Poisson Source) are stored in the TANGRAM2 OBJECTS DOMAIN. §B.2 in the Ap-
pendix shows how to create a new object.

To save the new model, click on File → Save new. The model will be saved in the
current directory.

2.2.2 Step 2: Generating the State Space

Once the model has been created , it can be solved either analytically or via simulation.
Since all events are exponential in the M/M/1/k model, it is possible to generate the
Markov chain and to solve it analytically. (The tool allows a class of non-Markovian
models to be solved analytically as well. See chapter 9 for details.)

To generate the state space, click on “Mathematical Model Module”. Figure 2.8 shows
the corresponding graphical interface.

The parameter Max number of states limits the total number of states that will be
generated by the program. If we set it to zero, no limit is used. This limit is useful during
the debugging of the model, and it is advisable to explicitly set this parameter to avoid
generating an unexpected very large state space due to specification errors.

In the next step, we must specifymaximum values for all state variables. This informa-
tion is useful for the hash function used by the search engine. Note that only a rough
upper bound on the value of each state variable is needed, not a precise value. If we click
on the Extract button, the name of the state variables are extracted from the model and
displayed in the interface. The maximum values can then be set.

In our example model, the Server Queue is limited to 100 and so the maximum value
of the state variable queue (Server Queue object) should be at least 100. Then

20 CHAPTER 2. GETTING STARTED

Figure 2.8: The Mathematical Model Module.

Variable Name Max Value

Server_Queue.queue 100

Now we are able to generate the state space of the model. To run the generator program,
click on the Generate button.

Several files are generated after this process is over. These files give the following
information: the infinitesimal generator matrix of the model, the corresponding transition
probability matrix of the model (if the matrix is uniformized), the state space of the model,
and other information that will be used as input for other modules of the TANGRAM-II
tool.

Now we are able to solve for the steady state of the model.

2.2.3 Step 3: Solving the Model (Analytically)

Once the state-transition matrix is generated, we can solve the model and obtain steady-
state or transient measures. To solve the model, click on the “Analytical Model Solution
button”. The corresponding graphical interface for steady state solution of a Markovian
model is shown in Figure 2.9.

Several solution methods are available. For detailed information on the use of different
solvers see Chapter 4. In this example, we will use the GTH method. To select the GTH

2.2. STARTING TANGRAM-II 21

Figure 2.9: Steady State Analytical Methods.

method, choose Solution Methods → Stationary → Exact→ GTH. The file generated
by the solver is <name of the model>.SS.gth. This file contains the stationary state
probability vector and will be used as the input of the Measures of Interest Module.

2.2.4 Step 4: Obtaining the Measures of Interest

Various measures of interest can be calculated with TANGRAM-II, including measures
obtained from functions of state variables, and conditional probabilities. For instance,
in our M/M/1/k model, we can compute the expected number of packets in the system
(queue + server) and the probability mass function of the number of the packets in the
queue (pmf).

To obtain a measure of interest, click on the Measures of Interest button in the
Modeling Environment interface. The graphical interface is shown in Figure 2.10.

As an example, choose “PMF of one or more state variables” to generate measures of interest.
The user must specify the name of the measure of interest, e.g pmf queue, that will be used
to identify the file where the selected measure will be stored. Then the user must specify
the file that contains the state probability vector. In our example that file has the form
<name of the model>.SS.gth (in this example, it is the file MM1k.SS.gth).

All state variables of the M/M/1/k model appear in the “Choose Variables” box. Our
example has only one state variable, so the only element in the box is Server Queue.queue.
Add the Server Queue.queue variable into the right box. After clicking on the Evaluate

button, the measure is evaluated provided that no mistakes were made. The message

22 CHAPTER 2. GETTING STARTED

Figure 2.10: The Measures of Interest Module.

“Measures of interest generated” will pop up as soon as the calculations are concluded.

To plot the results, click on the Plot button and choose the file name that you specified
to contain the Measures of Interest (in this case, MM1k.IM.pmf queue). We can see that
the expected value is shown, as well as the pmf of the number of packets in the queue
(GNUPlot button). This plot is shown in Figure 2.11.

We can perform more experiments. For example, we can change the value of the
service rate to 50. Then we generate the state transition probability matrix, the steady-
state solution, and compute the same measure of interest for this service rate. Figure 2.12
shows the result.

We can also evaluate other measures. For example, the utilization of the queue, the
expected number of customers in the queue (in this case E[queue] = (n − 1)π(n), where
π(n) is the probability that the system has n customers), the average time in the queue
using Little’s Law, etc.

Assume the measure of interest is the probability mass function of the queue size,
conditioned on that the system has more than 50 customers. We encourage the user to
check the Conditional box in Figure 2.10 and enter the proper condition. The result is
shown in 2.13.

The user can also obtain a variety of measures of interest from reward models. Examples
will be given in the following section.

2.2. STARTING TANGRAM-II 23

Queue Size

P
r
o
b
a
b
i
l
i
t
y

Figure 2.11: The plot generated by the PMF Module.

Queue Size

P
r
o
b
a
b
i
l
i
t
y

Figure 2.12: The plot generated by the PMF Module.

24 CHAPTER 2. GETTING STARTED

Figure 2.13: The plot generated by the PMF Module.

2.2.5 Reward Models

After describing the model, we can obtain different measures of interest using rate or
impulse rewards. Rate rewards are associated with the states in the model. These rewards
are generic enough to permit the definition of a wide range of measures of interest. (For
references on reward models and some of the techniques implemented, see [14, 16, 17].)

If a rate reward ri is associated with state i, them the system gains reward ri per time
unit spent in state i. Impulse rewards are associated with state transitions. If a reward ρij
is associated with the transition from state i to j, then the system gains a reward ρij each
time it makes a transition from i to j. The impulse rewards may be used as a counting
mechanism. An impulse reward can be associated with the triggering of an event, or with
the reception of a message.

Below, we illustrate the use of rewards with the M/M/1/k model. Return to the “Model
Specification Module”, and open our model (using TGIF). We specify the rewards using
the Rewards attribute:

Rewards=

rate_reward = <name of reward>

condition =

value = ;

Suppose that we are interested in calculating the utilization of the queue in the Server Queue

object. We can define a reward variable utilization that can express this measure of in-

2.2. STARTING TANGRAM-II 25

terest. The user should specify the name of the reward, used as an identifier. The condition
identifies the subset of states that will be associated with the reward. The reward value is
specified in value. If the condition is not satisfied, that means we are not in our chosen
subset of states and a reward of 0 is given.

Rewards=

rate_reward = utilization

condition = (Queue > 1)

value = 1.0;

The expected value of the queue size can be specified as a rate reward as follows:

Rewards=

rate_reward = q_size

condition= (TRUE)

value= queue;

Note that the total accumulated reward in (0, t) averaged over t is the expected queue size
in the interval.

Suppose now we are interested in counting the number of customers served in (0, t).
An impulse reward can be associated with the event Packet Service and defined to have
a value of 1 when this event triggers. We have:

Rewards=

impulse_reward = served

event= Packet_Service,1

value= 1;

Clearly the accumulated impulse reward in (0, t) averaged over t is the number of customers
serviced per unit time.

Figure 2.14 shows the model and the objects attributes specified.

2.2.6 Step 5: Simulating the Model

To simulate the model, click on “Simulation Module”. The graphical interface is shown in
Figure 3.2.

A set of parameters used to perform the simulation must be given:

Runs: 5

Stop Condition=

Transitions: 1000

More details about simulation parameters are given in Chapter 4.
To run the simulation, click on the Simulate button. After simulation, all measures

related to the rewards in the model are stored in the output file specified by the user. Such
measures include, for instance, the total reward accumulated averaged over time.

26 CHAPTER 2. GETTING STARTED

M

Declaration=
 Var
 State: Queue;

 Const
 Integer: QUEUE_SIZE;
 Port: PORT_IN;
 Float: SERVICE_RATE;

name=Server_Queue

Events=
 event=Packet_Service (EXP, SERVICE_RATE)
 condition= (Queue > 0)
 action= { int q;
 q = Queue - 1;
 set_st("Queue", q);
 };

Messages=
 msg_rec=PORT_IN
 action= { int q;
 q = Queue;
 if (Queue < QUEUE_SIZE)
 q = Queue + 1;
 set_st("Queue", q);
 };

Rewards=
rate_reward=utilization
condition=(Queue>1)
value=1;
rate_reward=q_size
condition=(True)
value=Queue;
rate_reward=empty
condition=(Queue==0)
value=1;
impulse_reward=served
event=Packet_Service, 1
value=1;

Initialization=
 Queue = 0
 QUEUE_SIZE = 100
 PORT_IN=wire
 SERVICE_RETA = 80

Watches=
 queue=0

P

Declaration=
 Const
 Float: PKT_RATE;
 Port: PORT_OUT;

name=Poisson_Source

Events=

 event= Packet_Generation(EXP, PKT_RATE)
 condition= (TRUE)
 action= {
 msg(PORT_OUT, all, 0);
 };

Messages=

Rewards=

Initialization=
 PORT_OUT=wire
 PKT_RATE=80

Watches=

Figure 2.14: The model with Rewards

Figure 2.15: The Simulation Module

2.3. SIMULATION PROGRAMMING WITH TANGRAM-II 27

2.3 Simulation Programming with Tangram-II

Inside this section there are some Tangram-II programming features, particularities, and
tips. These commands will not work with “Mathematical Model Generation”.

2.3.1 Messages Between Objects

Messages allow communication between objects. A message has parameters port, destination,
and value. Example:

• msg(PORT OUT, all, 4.56);

• msg(PORT OUT, all, var1);, where var1 could be int or float.

• msg(link, Server Queue, vec);, where vec could be int vec[k]; or int vec[];

for k > 1.

There are three ways to read the message body, depending on the message type:

1. msg data is always available in the message action code, and it keeps the value of the
message body (int or float). If the message sent was of a vector type, msg data will
have the value 0. For example,

var = msg_data;

2. msg type is always available too, and indicates the type of the message by an integer:
0 means an integer or float number, 1 means an integer vector (INT VEC), and 2
indicates a float vector (FLOAT VEC). E.g.

if (msg_type == 1) { ... }

3. integer vector type: the vector can be copied to a local integer vector, through the
function get msg data:

int vec[10];

get_msg_data(vec);

In this last case, if the sent vector is longer than the local vector, the excess part of
the sent vector will be dropped. On the other hand, if the local vector is longer than
the sent vector, the rest of the local vector will be 0-filled.

28 CHAPTER 2. GETTING STARTED

2.3.2 New commands

For more information see §3.3.

2.3.2.1 Obsolete commands

Commands get rew and set rew are now obsolete. They are replaced by the new pair
set cr() and get cr():

var = get_cr(reward_name);

where get cr returns as a float the cumulative reward corresponding to reward name.

var = set_cr(reward_name, value);

where the cumulative reward value of the reward reward name will be set to value.

2.3.2.2 Commands get ir() and set ir()

Instantaneous rewards (i.r.) define how much the cumulative reward (c.r.) will increase by
time unit. These i.r. values can be set in two different ways:

1. During the specification of the reward. Here the pairs condition-value defines all
about our i.r.

rate_reward = fluid1

condition = (state == 1)

value = -124.5;

Note: in the above example, the value of the i.r. changes in accordance with the
value of state, i.e. 0 when the condition is false and -124.5 otherwise.

2. Inside the action code, through the set ir command, which overrides the previous
value of the i.r. After using this command, this reward will increase by the value set.
Note: Conditional values of i.r., as in the previous note, are only allowed in the
reward declaration part. Once set ir is used, the conditional is ignored. To restore
the conditional declaration, use unset ir.

set_ir(fluid1, 100.5);

set_ir(utilization, 0);

Commands get ir and unset ir are used in the code of an action to get an instantaneous
reward’s value and to enable automatic calculation, respectively. Their behavior will be
defined by eq. (2.1) below.

2.3. SIMULATION PROGRAMMING WITH TANGRAM-II 29

CR

L 0=

t

IR < 0

t Dt

Figure 2.16: Triggering on a c.r.

x = get_ir(Queue_size);

unset_ir(utilization);

2.3.2.3 The special pseudo-event REWARD REACHED

The special pseudo-event REWARD REACHED was created in order to monitor values of cu-
mulative rewards. Through the use of this event, actions can be taken depending on the
level of a c.r.

The event triggers when a certain c.r. reaches a given value. The condition is

get_cr(reward) symbol limit

where get cr(reward) represents the accumulated value of c.r. reward, symbol is one of
“\/” or “/\”, and limit represents the value to be reached. The symbol “\/” indicates
that the trigger should occur when the c.r. crosses the limit from above, and “/\” that it
should occur when the c.r. crosses the limit from below; see Fig. 2.16.

The occurrence time of the next trigger is calculated by the following expression:

∆t =

CR− L

|IR|
, if CR > L and IR < 0,

L− CR

|IR|
, if CR < L and IR > 0,

∞, otherwise.

(2.1)

where CR and IR represent, respectively, the accumulated reward and the instantaneous
reward value of the reward specified in the condition, and L is the limit.

Multiple expressions like this can be used in the condition of the event, and the trigger
time will be set to the minimum of all the values.

30 CHAPTER 2. GETTING STARTED

Beyond these special expressions, other expressions can be used to define the condition,
like comparisons between state variables and constants. All expressions are evaluated,
and if the ordinary ones return TRUE, the trigger times are calculated (the smaller will
determine the event trigger), otherwise the event is disabled. Note: if the condition is
TRUE, but no rewards will cross their limits, the event will be scheduled for an infinite
time, that is, it will not be scheduled at all.

event = t0 (REWARD_REACHED)

condition =

((get_cr(fluid1) \/ 0) || (get_cr(fluid2) \/ 0))

action = { ... }

event = FullBuffer (REWARD_REACHED)

condition = ((Status==1) && (get_cr(buffer) /\ B))

action = { ... }

Warning: In order to use the REWARD REACHED event for some reward, this reward must
accumulate only using the set ir command. For rewards that accumulate as

rate_reward=buffer

bounds=0,B

condition=(SourceStage==1)

value=lambda-C;

condition=(SourceStage==0)

value=-C;

the REWARD REACHED event cannot be used. The declaration of a reward to use with a
REWARD REACHED event must be as follows:

rate_reward = buffer

bounds = 0,B

condition = (FALSE)

value = 0;

And in the event declaration

event = Activate_Source(EXP,alpha)

condition = (SourceStage==0)

action = {

float accum;

...

accum = lambda-C;

set_ir(buffer,accum);

...

2.3. SIMULATION PROGRAMMING WITH TANGRAM-II 31

};

event = BufferFull(REWARD_REACHED)

condition = (get_cr(buffer) /\ B)

action = {...};

Another limitation is when there are two simultaneous events at least one of which is a
REWARD REACHED event, and the same reward is updated on both events. The REWARD REACHED

event occurs after all other events, so the value that will be assigned to the reward will
be the one given by the REWARD REACHED event. The possibility of selecting which reward
value will be assigned (mean, maximum, minimum) is not implemented yet.

Also, a reward should be used as a condition only in one REWARD REACHED event.

2.3.2.4 The special reward rate reward sum

To monitor and control a set of rewards, there is a special reward that keeps the sum of
the accumulated reward of a set of specified rewards.

An example of the great importance of this feature is the use of the rate reward sum

to represent a shared buffer that has more that one reward to indicate each class of traffic.
Fluid classes can be specified and the total shared buffer can be defined as a bound in
the rate reward sum that monitors all classes. As in one single reward, the c.r. value of
the rate reward sum can be bounded by a range, and the simulator maintains the correct
ratio of each c.r. value of the individual rewards.

To illustrate this feature, we are going to analyze the following example:

rate_reward_sum = buffer

bounds = 0, B

rewards = fluid1 + fluid2;

rate_reward = fluid1

cr_bounds = 0, B

condition = (FALSE)

value = 0;

rate_reward = fluid2

cr_bounds = 0, B

condition = (FALSE)

value = 0;

Suppose that fluid1 and fluid2 represent two classes of traffic and they share the same
buffer B. Each fluid should be bounded according to the buffer size: 0, B. The amount of
buffer will be given by a rate reward sum called buffer. The behavior of the fluids will

32 CHAPTER 2. GETTING STARTED

0

B

fluid1

fluid2

buffer

depend upon the rate reward sum. If fluid1 and fluid2 are growing and the buffer reaches
the value B, the c.r. values of each fluid will be frozen because the buffer size can’t exceed
B.

This is a very simple example, but many other cases are treated. This complete treat-
ment makes the feature robust enough to represent all situations where the global bound
can affect the rewards.

One short example of this complexity is 3 rewards a, b, c, where a and b are growing
and c is decreasing. If the rate reward sum reaches the bound B, the amount of c.r. that
will be released by the decreasing c is distributed proportionally to the increasing a and b.
At this point, none of the rewards are frozen. c continues decreasing at the same rate, and
a, b will suffer a slope change that will limit their growth according to the distributed rate
as shown in Fig. 2.17.

Note: All rewards whose sum will be gathered in a rate reward sum must not appear
in any other rate reward sum reward. Tangram-II will report the error “Duplicated reward
reference xxx. The rewards reference must be mutually exclusive.” in this case.

2.3.2.5 State Variables of type Float

The Tangram-II simulator can deal with float state variables. This feature allows con-
struction of continuous-state models, which cannot be solved analytically. There are two
types of float state variables: scalars and vectors. The new syntax of the state variable
declaration is

Declaration =

Var:

Integer: Status;

Float: Fvar;

2.3. SIMULATION PROGRAMMING WITH TANGRAM-II 33

0

B

fluid1

fluid2

buffer

Figure 2.17: Illustration of bound affecting rewards.

Float: Fvec[10];

The use of these new variables is similar to that of the integer ones. The difference is in
the use of local variables of float type to avoid type cast errors:

float fvar;

fvar = 1.0/3*Fvar;

set_st(Fvar, fvar);

or for vectors,

float fvec[10], aux;

get_st(fvec, "Fvec[]");

...

fvec[2] = aux;

set_st("Fvec[]" , fvec);

2.3.2.6 Type cast

Now is possible to use of the type cast operator of the C language in assignments:

int i, var_i;

float f;

...

i = (int) 20/State;

f = (float) var_i;

34 CHAPTER 2. GETTING STARTED

2.3.2.7 Float/Integer Queue

This kind of state variable allows using a dynamic structure to keep the state values in the
simulator. All other state variables have a static size, defined during the modeling.

FloatQueue and IntegerQueue variables can be viewed as double-ended queues. The
commands save at head(), save at tail(), restore from head(), and restore from tail

manipulate these queues. restore from head and restore from tail remove the element
from the queue. One limitation is that Tangram-II dqueue operations only support vectors,
and Tangram’s vectors must have dimensions ≥ 2.

Declaration =

Var:

FloatQueue: Statusqueue(2);

Inside an event or message:

float b[2];

FloatQueue statusqueue(2);

...

get_st(statusqueue, "Statusqueue");

b[0] = 1.0;

b[1] = 2.5;

save_at_tail(statusqueue,b);

set_st("Statusqueue", statusqueue);

Inside another event or Message:

float a[2];

FloatQueue statusqueue(2);

...

get_st(statusqueue, "Statusqueue");

restore_from_head(statusqueue, a);

set_st("Statusqueue", statusqueue);

For more information, see the fluid server FIFO example.

2.4 Where to Go Next

In this chapter we illustrated how to build and solve a simple model. Tangram-II provides
much more modeling power and flexibility than is possible to demonstrate in a short tutorial
and we encourage the user to use the tool an explore the possibilities using a simple model
such as the M/M/1/k or any other small model the user is comfortable with. We also
encourage the user to compare analytical and simulation results. In the next chapters, we
describe many options available in the tool.

Chapter 3

Simulating with TANGRAM-II

3.1 Introduction

The main purpose of this chapter is to describe the simulation solver modules that is part
of TANGRAM-II tool. As in the analytical model, the model has to be fully specified using
the Model specification Module. To select the module use the simulation button.

3.2 The TANGRAM-II Simulator

When analytical methods can not be used to solve the model, simulation is the method
of choice. Simulation can be used for solve any kind of model specified in the Model
Specification Module. In this case, the events can have a general distribution, selected
from a set of pre-defined distributions. Alternatively, the times of occurrence of an event
can be read from a file.

3.2.1 Models with Rewards

After describing a model, a user can specify different measures of interest using rewards.
Rewards are values that can be associated with system states (rate rewards) or system
transitions (impulse rewards). Rewards are generic enough to allow the definition of a
wide range of measures.

A reward (rate or impulse) can be defined for a particular object using the Rewards
object attribute. This way, rewards are specified from the state variables of the associated
object. In order to use variables from different objects, we should use the global reward
instruct (see the object Global Rewards.sym) global reward object. The syntax used to
define a global reward is the same as that used for a reward. The variables used to evaluate
the condition can be state variables or rewards (impulse or rate) defined for the objects of
model.

35

36 CHAPTER 3. SIMULATING WITH TANGRAM-II

3.2.2 Discrete Event Simulation

3.2.2.1 Messages and Events

TANGRAM-II allows the description of general models (that is it is not tailored for a
particular application). As such it is important to be aware of how TANGRAM-II handles
messages and events to proper construct a model.

Messages are executed in zero time, so one issue is the order they are executed.
TANGRAM-II executes the messages in the order they are generated by the actions. When
an event triggers the event may send messages to other objects. The action associated to
each message received may in turn generate more messages and the process continues until
there is no more messages to be executed. When a message is processed during an action is
included in a list of messages to be executed. After all messages in an action are processed
the list of pending messages is searched, the action corresponding to the first message is
executed and possibly new messages are added at the tail of the list.

When the simulation starts, samples for all the enabled events are generated and in-
cluded in the event list in increasing order of time to trigger. (We recall that the value
of the state variables changes only after the action is completely processed, including the
execution of all messages associated with the action.) Whenever an event is enabled, a
sample is generated. If more than one event is enabled after the execution of an action,
then samples for them are generated and included in the event list. Assume that one of
the enabled events triggers and the new state reached (after the execution of the action
associated with the event) is such that all the other enabled events remain enabled. The
TANGRAM-II simulator does not regenerate new samples for the events that remain en-
abled. The samples remain in the event list until either they trigger, or the associated
event is disabled. In the last case the disabled events are removed from the event list.

To illustrate the process, consider an M/M/1/k queue. Assume that there are n > 1
packets in queue when at time t a packet departs from the server. A new customer enters
service and a new sample for the departure event is generated, say to trigger at time td > t.
Now assume a new customer arrives at t < ta < td. The new state after the arrival is n > 1
and so the departure event scheduled to trigger at td remains in the event queue, and and
no new sample for the departure event is generated.

Although the behavior above handles most situations, there are cases when the user
needs to re-sample an event after an action is executed even if the event remains enabled
in the new state. Although the current version of the simulator does not allow the user
to automatically ask for re-sampling an event this can be easily accomplished as follows.
Assume that two events E1 and E2 of object O need to be re-sampled after any action is
executed. Add a state variable Flush with gets only 2 values:0 and 1 (true or false). Then:
(a) duplicate events E1 and E2 (name the “new” events as E′

1 and E′

2; (b) add a condition
Flush = 0 for events E1 and E2 and Flush = 1 for events E′

1 and E′

2; (c) whenever an
event triggers and the user wants to re-sample events E1 and E2, change the value of the
Flush state variable. Assume that Flush = 0 and E1 and E2 are enabled. If an event

3.2. THE TANGRAM-II SIMULATOR 37

E triggers and Flush changes value, E1 and E2 are disabled even if the other conditions
are enabled. Therefore, the samples for E1 and E2 are removed from the event list, and
new samples are generated for E′

1 and E′

2, since they became enabled. Since all actions in
E′

1 and E′

2 are identical to E1 and E2, what was accomplished with Flush was simply to
re-sample the events. An example will be given in the example section 9 in example 9.5.

The user is encouraged to use the debug option in the config (ModelSpecific) menu
and follow the execution of messages and events.

TANGRAM-II also offers the user the capability of generate several samples of an event
after an action is executed. This is called event cloning, see §3.2.2.3.

3.2.2.2 Event Distributions

The interval between the occurrence of two events can have one of the following distribu-
tions:

1. Exponential - (EXP, rate)

2. Deterministic - (DET, rate)

3. Uniform - (UNI, lower value, upper value)

4. Gaussian - (GAUSS, mean, variance)

5. Erlang - (ERLANG, mean, number of stages)

6. Log Normal - (LOGNORM, mean,variance)

7. Pareto - (PAR, scale, shape)

8. Truncated Pareto - (TRUNCPAR,scale,shape, max value). In this distribution, if the
value of sample is more than the parameter max value, the sample is truncated at
max value.

9. Weibull - (WEIB, scale, shape)

10. FBM - (FBM, mean, variance, maximum level, time scale, Hurst)

11. FARIMA - (FARIMA, mean, variance, number of samples, time scale, Hurst)

12. File - (FILE, file name).

38 CHAPTER 3. SIMULATING WITH TANGRAM-II

FBM and FARIMA The FBM (Fraction Brownian Motion) and FARIMA (Fractional
ARIMA - Auto Regressive Integrated Moving Average) process can be used to model traffic
that exhibits long-range dependence. These distributions may be used in multimedia source
models to represent video and voice traffic. In the FBM and FARIMA distributions some
parameters have to be specified:

• maximum level the total number of samples generated is 2(max level).

• time scale time interval between two consecutive samples.

• number of samples total number of samples generated.

File Distribution When the File distribution is associated to an event, the time instants
where the event occurs are read from a file previously declared by the user. When more
than one simulation run is done, the time instants of each run must be declared in separated
files named filename.r i, where i denotes the index of the run starting from 0. filename,
without extension, can be used in place of filename.r0. Within these files, the time
instants are described by the following line format:

I_TIME N_EV

This indicates that N EV equally-spaced events occurred during the interval I TIME, starting
from previous interval, and the last event coincides with I TIME (see Figure 3.1).

Ex. file : 2 2
 1 1
 4 5

timet=0 2 3 7

Figure 3.1: File distribution trace format

Note: When the stop condition of the simulation is not satisfied and (1) the number
of samples of the FBM or FARIMA distribution is exhausted, or (2) the end of the file
containing the distribution is reached, a box displaying a warning message appears and the
simulation stops.

3.2.2.3 Event Cloning

Sometimes it is necessary to generate more than one sample of an event when the event
triggers. Event cloning is the mechanism used to implement this feature. (An example will
be presneted in chapter 9.) To clone an event, it is necessary to use the following function:
clone ev<name of event>.

3.2. THE TANGRAM-II SIMULATOR 39

3.2.2.4 Batch Simulation

After modeling the system, we can solve it using batch simulation. The Batch Simulation
Module is shown in Figure 3.2.

Figure 3.2: The Batch Simulation Module

The input parameters are :

• Simulation File Name: this file will store the result of all rewards specified in the
model.

• Runs: total number of simulation runs.

• Parallelize Runs: check it to distribute the simulation runs through a network of
workstations.

• Confidence Interval : the default value is 95%.

• Stop Condition: the simulation of the model will be interrupted in the following cases
:

– Time - Total time of each run, when only this parameter is specified.

– Number of Transitions - If only this parameter is specified, each run stops when
the specified number of transitions is reached.

– Only Events - When only this parameter is specified, each runs stops when the
specified event triggers the given number of times.

40 CHAPTER 3. SIMULATING WITH TANGRAM-II

– (Time and Transition) or (Time and Event) or (Time and State) - When the
user specifies one of these pairs, the simulation will be interrupted when one of
the conditions is satisfied.

– State and Time - This stop condition uses a state variable of an object. The
user should specify a lower and a upper bound for the state variable and the
simulation stops when one of the bounds is reached. Note: if the “state” option
is used, the user must also specify the “time” stop condition. This is a safety
feature, to force the simulation to halt in case neither the lower nor the upper
state variable bounds are reached.

• Reward Option - Press button Options to open the Reward Options Window

Figure 3.3: Reward Options Window

– Reward Behavior. This option is used whenever there are two or more con-
ditions/values associated with the same reward in the model. If two or more
different values are associated with the same reward at a state, only one reward
value can be associated to that state. The user can define the following values
to resolve the multiple assignment:

∗ Mean - The reward value to be assigned to the state is the arithmetic mean
of all values associated with true conditions.

∗ Maximum - The reward value is the maximum of all possible values.

∗ Minimum - The reward value is the minimum of all possible values.

∗ Error - In this case, an error message is given when more than one condition
is true for a specific state. This option is useful to catch model specification
errors if the user has no intention to allow multiple reward values to be
assigned to a state.

3.2. THE TANGRAM-II SIMULATOR 41

– Reward Trace Files. Click Trace to generate traces from your rewards. The
first column of the file is the simulation time and the second is the reward value.
Reward values are only written into the trace file when the reward changes its
value. Note: Use it with caution because you may generate huge files, refer to
the FAQ for knowing how to compress these files.

– Reward Levels Specification. Set max values if you want to know how much time
the reward was above that level.

3.2.2.5 Parallelize Runs

Tangram II uses PVM (Parallel Virtual Machine) to parallelize simulation runs. This
requires that rsh and PVM be installed in your system. Binaries and source code of
the PVM can be found at http://www.csm.ornl.gov/pvm/pvm home.html. It is also
interesting to install XPVM, PVM’s graphical interface.

3.2.2.6 Configuring your Network of Workstations

Either the directory that you are running your model is replicated on each machine, or it
is a distributed directory (NFS or some other distributed file system). The second option
is better.

Create in your home directory(ies) a .rhosts file with the workstations you will use.
Start xpvm or pvm and add these workstations to the pvm network (PVM command add

<workstation>; XPVM: Hosts→Other Host or read Help→Hosts to see how to create
and use the .xpvm hosts configuration file). Now click on the Tangram’s Parallel check
box and then the Simulate button. If you are using xpvm, you will be able to see the
interaction between the workstations.

Note: if you cannot add a machine to your PVM network, try running rsh <machine>
and see if it requires the password to login. PVM is not able to deal with passwords. The
next step is to check, on each machine, if the $PVM ROOT environment variable has your
PVM’s root path (TANGRAM II needs it also). Tips:

• If you keep xpvm open, you should reset your Trace and your View before running
your simulation again.

• If xpvm hangs, which is quite common, just kill it and restart again, your simulation
runs with pvmd and will not be stopped.

If the trace generation is enabled, each workstation will write a trace file on it is own.

3.2.2.7 Interactive Simulation

TANGRAM-II allows interactive simulation to be performed. Then all state variables
described in the model are updated during the evolution of the simulation. This kind of
simulation is useful for debugging the model, and for educational purposes.

42 CHAPTER 3. SIMULATING WITH TANGRAM-II

Animation is another feature available to the user. In this case, the object has pre-
defined animations that are executed according to the states the object reaches.

The animation is specified by the user, by introducing a new attribute to an object:
the Animation attribute. Using this attribute, the user should specify the animation of
the object and others related objects. Note that the TGIF object being used in the model
specification should not be used for simulation with animation. A separate TGIF object
should perform the animation. The procedures, of calling an animated object and of
specifying an animation, has to be done using TGIFs internal commands, that are similar
to a programming language. TGIF supports a few animation primitives that can be used
to perform the animations. A good reference of all supported commands can be found
in the TGIF manual (http://bourbon.cs.umd.edu:8001/tgif). After a simulation step,
the animation starts and a pre-defined number of animation steps are executed before
resuming the simulation. “Simultaneous” animation of different objects are allowed and
each animation is performed only at specified steps. The Interactive Simulation Module is
shown in Figure 3.4.

Figure 3.4: The Interactive Simulation Module.

We have three types of interactive simulations. The first, called step simulation, allows
the user to specify the number of steps to be executed before the simulation is interrupted.
In the second type, continuous simulation, the simulation is stopped at each transition of
the model. Finally, the third type is simulation with animation. Each time the simulation
stops, the user can observe on the TGIF canvas the current values of the model’s state
variables.

3.2. THE TANGRAM-II SIMULATOR 43

The following parameters must be given to an interactive simulation :

1. Step Simulation - The parameter to be given is the number of events executed
between two consecutive stopping points.

2. Continuous Simulation - In this case, the parameter is the time, in milliseconds,
that the TGIF interface, will be frozen before the next transition takes place.

3. Animation - The user can choose one of the following parameters: time between
steps or time scale. The first parameter is the same as the parameter “time” defined
for the continuous simulation. The second is defined to allow the user to observe the
transitions of the model at a time scale proportional to the rate that they occur. For
example, if the time till the next transition is 10 units and the time scale is 100ms,
when this transition fires, the simulation stops for 1000ms.

After entering the parameters, the user can click on the Simulate button. Then, a box
appears with the options start, step, end and close as shown in Figure 3.5. To start,
the user should click on the start button, and a TGIF screen with the model is opened (in
this screen a new box at the upper left-hand corner appears with the number of transitions
of the model and the simulation time - see figure 3.6).

The simulation behavior depends on the type previously chosen. If the user choose
step simulation, the values of the state variables are displayed at each step. To proceed
to the next step, the user has to click on the step button (see Figure 3.5). To end the
simulation, the user has to click on the end button which closes the TGIF interface, and
then on the close button.

If the option chosen by the user, was continuous simulation, he/she should click on the
step button. Then, after each transition of the model, the values of the states variables
are displayed at intervals equal to the given time between steps. To stop the simulation,
the user must click on the progress indicator of the TGIF interface (see Figure 3.6). After
stopping, she can resume the simulation by clicking on the step button or she can finish
the simulation by clicking on the end button.

If the option chosen by the user, was continuous simulation, he/she should click on the
step button. Then, after each transition of the model, the values of the states variables
are displayed at intervals equal to the given time between steps. To stop the simulation,
the user must click on the progress indicator of the TGIF interface (see Figure 3.6). After
stopping, she can resume the simulation by clicking on the step button, or she can finish
the simulation by clicking on the end button.

In the animation option, the procedure to be employed by the user is the same as for
continuous simulation.

44 CHAPTER 3. SIMULATING WITH TANGRAM-II

Figure 3.5: The box used to control interactive simulation

Figure 3.6: TGIF interface - Progress Indicator - Interactive simulation

3.3. FLUID SIMULATION 45

Figure 3.7: On-Off source.

3.3 Fluid Simulation

In last section, traditional simulation was the main issue. In that case, the events to
be executed in the simulation were listed in time order. The simulation goes on with the
execution of the events, and the scheduling of the new events in the list. A time distribution
for the new event must be indicated in the model.

In fluid simulation, beyond the traditional events, there are new events related to the
fluid behavior. Unlike traditional simulation, where, e.g., a simple server may have a simple
event, a fluid simulation server has several events, like emptying a buffer, filling a buffer, or
changing a rate. For execution of these events, a special behavior is required, as to monitor
fluid levels, or foreseen event time execution.

3.3.1 On-off source

Five parameters must be specified in the Initialization attribute.

• FLUID CLASS - Indicates the class number that will receive the fluid traffic generated
by the source in the subsequent queue server object. Typical values range between 1
and 3 in the presented examples.

• ONOFF RATE - Indicates the transition rate from the “on” to the “off” state.

• OFFON RATE - Indicates the transition rate from the “off” to the “on” state.

• FLUID RATE - Indicates the rate of the volume of fluid that will be generated in the
on state.

• PORT OUT - Responsible for the connection between the source and the subsequent
object. A string should be specified, and it must be the same as the port in in the
next object. Two identical names indicate the direct association of the objects.

Important: Suppose that we have a model where an on-off source feeds a buffer. The
initial on-off source state is “on”. Although the buffer size has to be increased until the
first change to the “off” state, this does not happen. The buffer size only increases after
the first change to the “on” state. In this case, we can initialize the source with “off” and
declare an event with high rate that changes the source state to “on”.

46 CHAPTER 3. SIMULATING WITH TANGRAM-II

Figure 3.8: 3-state MMFS source

3.3.2 3-state MMFS source

Five parameters must be specified in the Initialization attribute.

• FLUID CLASS - The class number that will receive the fluid traffic generated by the
source in the subsequent queue server object. Typical values range between 1 and 3
in the presented examples.

• RATE 0 - The volume rate of the fluid that will be generated in state 0.

• RATE 1 - The volume rate of the fluid that will be generated in state 1.

• RATE 2 - The volume rate of the fluid that will be generated in state 2.

• TRANS 0 1 - The transition rate from state 0 to state 1.

• TRANS 1 0 - The transition rate from state 1 to state 0.

• TRANS 1 2 - The transition rate from state 1 to state 2.

• TRANS 2 1 - The transition rate from state 2 to state 1.

• PORT OUT - Responsible for the connection between the source and the subsequent
object.

3.3.3 Channel

Three parameters must be specified in the Initialization attribute.

• DELAY - Indicates the the propagation delay in the channel. Values should be greater
than 0.

• PORT IN - Name of port where the fluid came from.

• PORT OUT - Port responsible for the connection with the subsequent object.

3.3. FLUID SIMULATION 47

Figure 3.9: Channel

Figure 3.10: Sink

3.3.4 Sink

One parameter must be specified in the Initialization attribute. This object can support
up to 3 classes of fluid.

• PORT IN - Port from where the fluid came.

3.3.5 server queue FIFO - CS

Five parameters must be specified in the Initialization attribute. This object can
support up to 3 classes of fluid.

• B - A float number representing the shared buffer size.

• C - A float number representing the service rate capacity.

• PORT IN - Where the fluid came from.

• PORT OUT - Responsible for connection with the subsequent object.

• MYSELF - This string must contain the object name.

Important: The routing is done by this object, so you must set in the Messages attribute
the output port and the fluid class for each departure rate. This part of the code is labeled
by

Figure 3.11: server queue - FIFO

48 CHAPTER 3. SIMULATING WITH TANGRAM-II

Figure 3.12: server queue - GPS-CS

"/*-- send newdeparture rates -- (ROUTING) --- */"

By default all messages are sent to port out and the fluid class remains the same (fluid 1
is send to fluid class 1 of the subsequent queue, etc).

3.3.6 server queue GPS - CS

Eight parameters must be specified in Initialization attribute. Note: This object can
support up to 3 classes of fluid.

• B - A float representing the shared buffer size.

• C - A float representing the service rate capacity.

• FI1 - A float that represents the weight of the class 1 fluid.

• FI2 - A float that represents the weight of the class 2 fluid.

• FI3 - A float that represents the weight of the class 3 fluid.

• PORT IN - Indicates where the fluid came from.

• PORT OUT - Connection with the subsequent object.

• MYSELF - The object name.

Note: The sum fi1 + fi2 + fi3 must be equal to 1. Important: The routing is done by
this object, so you must set in the Messages attribute the output port and the fluid class
for each departure rate. The same as server queue FIFO - CS object.

3.3.7 server queue GPS - CP

Eight parameters must be specified in the Initialization attribute. This object can
support up to 3 classes of fluid. The parameters are the same as for server queue GPS -
CS.

3.4. WHERE TO GO NEXT 49

Figure 3.13: server queue - GPS-CP

Figure 3.14: server queue - GPS-CP

3.3.8 fluid leaky bucket

Seven parameters must be specified in the Initialization attribute. This object can
support just one fluid class.

• FLUID CLASS - The class number that will receive the fluid traffic released by the flb
in the subsequent queue server object. Typical values range between 1 and 3 in the
presented examples.

• CREDIT RATE - A float that indicates the rate of credit generation for the bucket.

• BUCKET SIZE - The size of the bucket, a float-type constant.

• BUFFER SIZE - The size of the data buffer, a float-type constant.

• PORT IN, PORT OUT, MYSELF - As above.

3.4 Where to Go Next

In this chapter we have described the simulation solver available in TANGRAM-II. The
next chapter will present the Matrix Visualization and States Permutation tool.

50 CHAPTER 3. SIMULATING WITH TANGRAM-II

Chapter 4

Solvers

4.1 Introduction

This chapter describes the analytical solvers that are available in the TANGRAM-II tool.
The solvers are selected using either the Analytical Model Solution or Simulation buttons.
The model has to be fully specified using the Model Specification Module. Before solving
the model analytically, the user has to generate the proper mathematical model using the
Mathematical Model Generation button.

All analytical solvers require the generation of the mathematical model, i.e. the state
space and the state transition rate matrix for Markovian models. Therefore the Mathe-
matical Model Module must be executed before we are able to use any of the analytical
solvers.

4.2 Steady-state analytical solvers

In a large number of applications, it is necessary to find the steady-state solution of the
system being analyzed. Although the analyst is often interested in the system behavior
during a finite time interval (0, t), the steady-state solution may be a good approximation
for values of t “sufficiently large”. From this solution, several measures of interest can be
calculated, for instance the system availability, which is the fraction of time the system
remains operational during (0,∞). Other examples of measures include the average number
of tasks processed per unit of time (throughput), the expected time to process a task, etc.

We can divide the methods used to obtain the steady state solution into direct and
iterative methods. A method is called direct when the exact solution is obtained after a
finite number of steps. On the other hand, a method is called iterative when it produces a
sequence of approximate solutions that converge to the exact value.

In general, direct methods are appropriate when the state space of the model is not very
large and when the corresponding state transition matrix is not sparse. Iterative methods,

51

52 CHAPTER 4. SOLVERS

on the other hand, are appropriate when the state transition matrix is large and sparse,
since they preserve the sparseness of the matrix.

For Markovian models the direct methods implemented are GTH and block GTH, and
the iterative methods are SOR, Jacobi, Gauss-Seidel, and Power.

4.2.1 Direct Methods - GTH and Block GTH

The GTH algorithm is a steady-state direct method that has nice properties. Basically, the
algorithm works by eliminating states, one at a time from the set of states of the model. In
other words, from the initial transition probability matrix, the stochastic complement of the
matrix for a state is obtained and, at each subsequent step, a new stochastic complement
is calculated from that found in the preceding step. Finally, an upper-triangular matrix U
is obtained and the system π = πU is solved.

The block version of the algorithm is also implemented. In this case, blocks of states are
eliminated at a time, instead of a single state. As a consequence, the procedure requires
calculation of the inverse of the diagonal blocks of the uniformized stochastic matrix.

One advantage of the GTH method is that is does not require any subtractions. Another
interesting advantage is that the approach has a probabilistic interpretation. One problem
is the “fill-in” that may occur in the matrix, which can destroy the sparseness of the original.
However the method does preserve an existing banded structure (which is common in many
system models).

To use this method, choose the button Analytical Model Solution. Choose Stationary

→ Exact. The interface is shown in Figure 4.1.

Note: If the method to be used is the GTH block, we must specify the final state and
the block size (the number of states in the block). In chapter 5 we show how the user can
specify the blocks after visualizing the transition probability matrix.

4.2.2 Iterative Methods - Jacobi, Gauss-Seidel, Power, and SOR

In many computer and communication system models, the probability transition matrix is
very large but also sparse. In this case, the iterative methods are particularly attractive,
since they preserve the sparseness of the matrix. In these methods, a sequence of approxi-
mate values π(k) for the stationary probability vector is generated, which should converge
to the solution π. Each iteration of the method has a cost approximately equal to the cost
of multiplying a vector by a (sparse) matrix. Therefore, the number of iterations is crucial
in determining the total cost of the algorithm.

The Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) methods are classical
solution methods for a linear system. These and the Power method are used to solve the
system π = πP , where P is a stochastic matrix. The interface for iterative methods is
shown in Figure 4.2.

4.2. STEADY-STATE ANALYTICAL SOLVERS 53

Figure 4.1: The Stationary Exact Methods.

Figure 4.2: The Stationary Iterative Methods.

54 CHAPTER 4. SOLVERS

Two parameters have to be defined for these methods: the precision and the maximum
number of iterations. The maximum number of iterations is used as a stopping condition,
if the convergence is slow. If the method does not converge in “max number of iterations”,
it stops running and the user is notified.

4.2.3 Non-Markovian Models

The tool allows the solution of a class of non-Markovian models. Presently, the models that
can be solved are restricted to those in which at most one deterministic event is enabled
at any one time. The deterministic events may be enabled by any event and disabled by
exponential events.

In this method an embedded Markov chain is constructed at special time points (em-
bedded points). In any interval between embedded points, there may be either zero or
a single deterministic event enabled. For instance, assume that the model consists of a
single-server queue with deterministic service times. The embedded points are the service
completion instants and the beginning of a busy period. Once the embedded points are
determined, the transition probabilities between them are found, and then the measures
of interest (see [19] for details on the solution technique).

To use this method, choose the button Analytical Model Solution and then click on
Non-Markovian models. The interface is shown in 4.3.

Figure 4.3: Non-Markovian Models.

The following parameters must be specified :

4.3. TRANSIENT ANALYTICAL SOLVERS 55

Measures of Interest The measures of interest are the marginal probabilities that the
system spent in the specified states (see chapter 9 for details).

Solution Methods Steady-state solution for solving the embedded chain (Methods :,
Power, or SOR).

Precision

Max number of iterations as defined for Iterative Methods.

During the intervals in which a deterministic event is enabled, a group of objects may
evolve independently of other groups in the model. The solution technique we employ
can take advantage of this behavior to reduce the computational costs of calculating the
transition probabilities between embedded points.

Note: It is not allowed to run PMF when the file selected is from a non-Markovian
solution.

Note: Every non-Markovian model must have an independent chains object. This
object specifies the deterministic event, a set of “chains”, and associated objects. A set of
objects associated with a chain must evolve independently of other objects associated with
another chain. This special object can be found in the library (Domain TANGRAM2 OBJECTS).
In the “Model with Deterministic Server” example (chapter 9), we show an example of the
use of the independent chains object.

Warning: The order of the objects in any chain must be exactly the same as the order
of the list of objects in the Mathematical Model Module window.

Warning: The specification of the “independent chains” is for the sophisticated user
who is familiar with the solution technique. If the user is not familiar with that technique,
he should associate all objects with a single chain for each deterministic event.

4.3 Transient analytical solvers

In many cases, the modeler is interested in calculating measures for a relatively “short”
interval, and so the results obtained from the steady state solution (t → ∞) are not good
approximations for the desired measures.

There are many examples which show the importance of determining the transient
behavior of the system being modeled. For instance:

1. In the analysis of systems that have to remain operational in a given interval of
time (usually called the system mission time), such as on-board aircraft computers,
satellite systems, etc. In these cases, possible questions to be answered are related
to the probability that the system will fail during the mission time. A failure in the
system can be catastrophic or can cause considerably loss of revenues.

56 CHAPTER 4. SOLVERS

2. Consider a model of a data communication channel with limited buffer. There are
many important questions to be answered such as: “what is the probability that a
packet is lost due to buffer overflow, during a given interval of time ?” Or “how long
does it take until a packet is lost ?”

3. Transient analysis is also useful to determine equilibrium results in many models. For
instance, the steady-state behavior of regenerative processes may be characterized by
the behavior of the process over a cycle (finite time between two regeneration points).

See [18] for a survey on transient analysis.
The interface for transient analysis is shown in Figure 4.4. It can be seen from the figure

that we can obtain three types of transient measures: Point Probabilities, Distributions,
and Expected Values (see also Figure 1.4.

Figure 4.4: The Transient Methods.

Most of our transient solution methods are founded on the Uniformization technique
(see references [12, 13, 18, 13, 45, 23].)

4.3.1 Point Probabilities

4.3.1.1 Uniformization Technique

The interface to compute Point Probabilities is shown in Figure 4.5.
The parameters to be given are :

1. Initial Probability. This parameter specifies the probability vector at time zero.

4.3. TRANSIENT ANALYTICAL SOLVERS 57

Figure 4.5: Point Probabilities Interface - Uniformization Technique.

• Equiprobable: all states in the model have the same Initial Probability.

• Initial State: the initial state specified in the model has Initial Probability equal
to one and all other states have Initial Probability equal to zero.

• Equiprobable Set : each state in the set specified has the same Initial Probability.

2. Time Intervals. This specifies all the intervals at which the point probability will
be calculated.

• Initial Time: specifies the first observation point. This time must be greater
than zero.

• Final Time: this is the last observation point.

• Number of points: this specifies the total number of observation points in a time
interval, including the Initial and the Final Time.

3. Precision. Error bound.

4.3.1.2 Approximation Technique

One of the most widely-used techniques to obtain transient measures is the Uniformization
method. However, although uniformization has many advantages, the computational cost
required to calculate transient probabilities may be very large for stiff models (transition
rates that differ by several orders of magnitude). This occurs because the computational

58 CHAPTER 4. SOLVERS

cost of uniformization is proportional to Λt, where t is the length of the observation period
and Λ is a parameter which is greater than or equal to the largest absolute value of the
diagonal elements of the infinitesimal generator Q. Stiff models may give rise to large Λt
values.

In [25], an efficient method to calculate transient state probabilities of Markov models
and cumulative expected reward measures over a finite interval, based in the approach of
[43] is proposed. In that work, the measures can be computed from iterative and direct
solution techniques. For more details, see [25].

4.3.1.2.1 Direct Method The interface to compute an approximation for the tran-
sient state probabilities based on [25], using a direct method, is shown in Figure 4.6. This
method has computational advantages when the matrix has a special structure.

Figure 4.6: Point Probabilities Interface - Approximation Technique (Direct).

The input parameters are:

1. Initial Probability. The initial probabilities at time zero.

2. Time Intervals. The time points at which point probabilities will be calculated.

• Final Time: this time is the last observation point.

• Number of points: the total number of observation points in the given time
interval.

• erlang Stages: the total number of Erlang Stages to be used in the approximation
(See [43, 22] for more details about this parameter).

4.3. TRANSIENT ANALYTICAL SOLVERS 59

3. Block Set. The direct method assumes that the matrix is partitioned into K blocks.
The user has to define the initial state, the block size, and the number of blocks.

4. Measures of Interest

• State Probability : with this option the point probability at time t is obtained.

• Probability of a set : with this option, the probability that the system is in a
set of states at time t is calculated. In this case the user has to specify the
set of states using the global reward object Global Rewards.sym . The states
included in the set are those that satisfy the condition defined for the global
reward.

• Expected Value: with this option the expected value at time t of one state vari-
able is calculated. In this case the user has to specify in the model a rate reward
with the value of the state variable.

5. State var. This parameter is specified only if the “Expected Value” option is chosen.

4.3.1.2.2 Iterative Method The interface to compute the state probability approxi-
mation by an iterative method, is shown in Figure 4.7. This method is indicated for sparse
matrices.

Figure 4.7: Point Probabilities Interface - Approximation Technique (Iterative).

The input parameters are :

1. Initial Probability. The initial probabilities at time zero.

60 CHAPTER 4. SOLVERS

2. Time Intervals. This option specifies all intervals where the point probability will
be calculated. In this case we can specify different intervals, each with a different
Erlang stages parameter. The intervals are non-overlapping and exhaustive, and the
first begins at t = 0.

3. Solution Method. We must choose the iterative method that will be used in the
calculations. These methods were described in the previous section.

4. Measure of Interest. As above.

5. State var As above.

4.3.2 Distributions

Two algorithms are implemented to compute the following measures: cumulative reward
distribution and operational time distribution (and related measures). (See [12, 14, 17, 11].)

4.3.2.1 Cumulative Reward Distribution

The tool calculates the distribution of the cumulative reward CR(t) in the following cases:
(1) when the random variable CR(t) is not bounded, (2) when the random variable is
bounded by Lbound and Ubound.

One measure that can be obtained with this algorithm is the transient queue length
distribution (and from that, the packet loss ratio as a function of time). Let b(t) be the
number of packets stored in a limited buffer and M = {M(t), t ≥ 0} the process that
models the traffic source (Markov reward model). It is not difficult to see that if C is
the channel capacity and if we associate to state s a rate reward rc(s) = λs − C, then
the random variable CR(t) is equal to the buffer size at t provided that CR(t) is limited
between 0 and the maximum buffer size B.

The interface for this method is presented in Figure 4.8.
The input parameters: ,Initial Probability, Time Intervals, and Precision have to be

specified as in the Uniformization technique. To choose the Reward Name, the user have
to click on the little button on the right hand side of the box with the Reward Name. Then,
another window with the name of all rewards, specified by the user will appear and the
user will be able to select one of them. The probabilities will be computed for the Reward
Levels given. For example, if we give as reward levels 1000 and 1500, the tool outputs will
be P [CR(t) > 1000] and P [CR(t) > 1500] plus the probabilities calculated for the lower
and upper bound, provided that bounds are given for the reward CR(t).

4.3.2.2 Cumulative Operational Time Distribution

The tool computes the distribution of the cumulative operational time and other measures
of interest, such as: (1) expected availability, (2) reliability, (3) expected lifetime. The

4.3. TRANSIENT ANALYTICAL SOLVERS 61

Figure 4.8: Cumulative Reward Distribution Interface

interface for this method is presented in Figure 4.9.

The parameters to be specified are the same as for the Cumulative Reward Distribution
. The Reward Levels are given as a fraction of time, i.e. a number between 0 and 1.

4.3.3 Plotting 3D or 2D graphics for time-varying measures

In order to plot the transient measure of interest with time the following steps should be
followed:

1. Solve the model using a transient analytical method. Select, for instance, the Tran-
sient/Point Probabilities/Uniformization tab, under the Analytical Methods window,
and fill in the parameters. Then click on the Evaluate button.

2. On the Measures of Interest window, select more than one file for the State Proba-
bilities File Name (for instance all files with TS.pp extension). The selection is done
by holding the shift (or control) keyboard button and clicking the mouse left button.
Note that several names will appear in the State Probabilities File Name window.
If you want to generate a file to be plotted in 3D, you have to select one of the fol-
lowing options: “PMF of one or more state variables”, “Function of state variables”,
or “Probability of a set” and click on the Evaluate button. Then a file with a .3d

extension will be generated.

3. On the Measures of Interest window, click on the Plot button. There are two options:

62 CHAPTER 4. SOLVERS

Figure 4.9: Cumulative Operational Time Distribution Interface

(a) Select a file with the .3d extension and click on the GNUPlot button. Then a 3D
graph will be shown, representing, for instance, the evolution of the probability
mass function with time of the previously selected state variable.

(b) If, instead, you select multiple input files by holding the shift or control keys,
and then clicking on the GNUPlot button, a 2D graphic will be plotted with
all selected files. Note that GNUplot has a pre-defined sequence of colors for
graphics with multiple functions. The order the files are selected determines the
sequence of colors used in the plot.

The user is encouraged to solve the simple MM1k example to familiarize him/herself with
all the features and the solution files generated by Tangram-II.

4.3.4 Expected Values

4.3.4.1 Expected Cumulative Rate Reward

4.3.4.1.1 Uniformization Technique The interface for this method is shown in Fig-
ure 4.10.

The parameters are the same as for the Cumulative Reward Distribution Method .
Warning: the method gives as output the expected cumulative reward E[CR(t)], not
E[CR(t)/t].

4.3. TRANSIENT ANALYTICAL SOLVERS 63

Figure 4.10: Expected Cumulative Rate Reward Interface - Uniformization Technique.

4.3.4.1.2 Approximation Technique An approximation to the expected cumulative
rate reward E[CR(t)] can also be obtained similarly to the method used to calculate the
point probabilities (See [25] for more details.)

1. Expected Cumulative Reward Approximation - Direct Method. The interface to com-
pute the expected cumulative reward approximation, using a direct method is shown
in Figure 4.11.

The input parameters are the same as for the Point Probability Approximation
Method. However, when a Measure of Interest is chosen, the Expected Cumulative
Reward Approximation method does not allow the Expected Value option .

2. Expected Cumulative Reward Approximation - Iterative Method. The interface to
compute the expected cumulative reward approximation, using an iterative method,
is shown in Figure 4.12.

The input parameters are the same as for the Point Probability Approximation
Method. However, when a Measure of Interest is chosen, the Expected Cumulative
Reward Approximation method does not allow the Expected Value option .

4.3.4.2 Fraction of Time the Accumulated Reward is above a Level

This measure can be used, for example, to compute the expected time a finite buffer is
above a given level during (0, t). The interface for this method is presented in Figure 4.8
(it is the same as for the Expected Cumulative Reward Distribution).

64 CHAPTER 4. SOLVERS

Figure 4.11: Expected Cumulative Rate Reward Interface - Approximation Technique.

Figure 4.12: Expected Cumulative Rate Reward Interface - Approximation Technique.

4.4. WHERE TO GO NEXT 65

4.3.4.3 Expected Cumulative Impulse Reward

The number of occurrences of some events during an interval is another important random
variable to be considered in the analysis of computer systems. For instance, we may be
interested in the number of failures of a given component during (0, t); or in the number of
times a given component caused the system to fail. In this case, the rewards are associated
with the transitions of the Markov chain model.

We can calculate the expected cumulative impulse reward of the given events using the
Expected Cumulative Impulse Reward (See [23]).

The interface for this method is shown in Figure 4.13.

Figure 4.13: Expected Cumulative Impulse Reward Interface - Uniformization Technique.

The parameters are the same as for the Expected Cumulative Rate Reward - Uni-
formization Technique.

4.4 Where to Go Next

In this chapter we have described the analytical solver available in TANGRAM-II. The
next chapter will present the simulation solver.

4.5 References

1. Iterative Methods - SOR, Gauss-Siedel, Jacobi and Power: [45, 23]

66 CHAPTER 4. SOLVERS

2. Direct Methods - GTH and GTH block: [45, 23, 30, 29]

3. Non-Markovian Models: [19, 15] and references therein.

4. Uniformization Technique and Expected Cumulative Reward: [32, 13, 18].

5. Efficient Solution - Probability Approximation and Reward Approxima-
tion: [43, 25]

6. Bounded Cumulative Reward Distribution and Fraction of Time the Ac-
cumulated Reward is above a Level: [11, 21]

7. Operational Time and Related Measures: [12, 14]

8. Performability Measures, Reward Models: [16, 14, 17]

Chapter 5

Matrix Visualization - State
Ordering

5.1 Introduction

Direct analytical solution techniques can take advantage of special structure in the gener-
ator matrix. It is interesting to be able to change the order of the states variables of the
model, to obtain different structures which hopefully may lower the computational costs
of the solution.

This chapter describes the Matrix Visualization - State Ordering tool. It allows the user
to change the order of the state variables of the model and to visualize the state transition
matrix obtained after each permutation.

5.2 How to use the Matrix Visualization - State Ordering

To use the Matrix Visualization - State Ordering, choose the Analytical Model Solution
button, and then, the View Matrix button. The interface is shown in Figure 5.1.

The main options of the Matrix Visualization - State Ordering interface are :

1. Ordering of States

• Use permutation. This option is used when we want to see the structure of the
matrix with the permutation of the state variables that is defined in the List of

State Variables box. When we want to see the structure of the matrix after
the chain is generated (the matrix visualization program does not guarantee any
pre-defined state ordering), we do not select this option.

• List of State Variables. Used to obtain a state ordering. The number on
the left side of each variable represents its current position in the variable vec-

67

68 CHAPTER 5. MATRIX VISUALIZATION - STATE ORDERING

Figure 5.1: The Matrix Visualization - States Permutation Interface.

tor. It is possible to change the order of the variables with the following but-
tons: First, Up, Down, Last. The state variables are used to obtain a specific
state ordering. For example, if the state variables are ordered as shown in Figure
5.1, then the states are ordered in such a way that the last state variable varies
faster than the previous state variable, in increasing order. The tool generates
the uniformized state transition probability matrix from the generator matrix.

2. Color Options. This option is used to associate colors to probabilities of states
(Low, High and Zero probabilities). All the colors can be chosen from the following
set black, white, red, green, blue, yellow, cyan, purple. The color depth defines the
number of colors used to represent the probabilities. For example, if color depth is 4
then the number of colors used is 24 = 16.

3. Extra Options

• Use another extension to define the state transition probability matrix file. A
new extension is used for the probability matrix file instead of the default
i<model name>.st trans prob mtx.

• Zoom out strategy. This option is useful when the number of elements in the
matrix is greater than the number of pixels in the window canvas.

– Maximum Probability: the probability shown will be the maximum proba-
bility (in the transitions that occupy the pixel).

– Minimum Probability: the probability shown will be the minimum proba-
bility (in the transitions that occupy the pixel).

5.2. HOW TO USE THE MATRIX VISUALIZATION - STATE ORDERING 69

– Average Probability: the probability shown will be the average probability
(in thetransitions that occupy the pixel).

• Buttons

– Show Display the matrix with the configurations specified in the interface.

– Update Generates new files (generator matrix, etc) according to the new
state ordering.

– Close Closes the window.

The interface to visualize the matrix is shown in Figure 5.2.

Figure 5.2: The Matrix Visualization Interface.

The main options of the Matrix Visualization interface are:

• On the left, the matrix is shown.

• The Zoom Information displays information concerning the current zoom. There
are options to zoom to a specific area of the matrix. The given parameters are the
coordinates and the size of the area (in number of states).

70 CHAPTER 5. MATRIX VISUALIZATION - STATE ORDERING

• The tool bars are on the upper right corner. It is possible to choose among the
following options: . The option Show Blocks: On/Off is used to show the blocks
defined for the matrix and that will be used in block solution methods (e.g. GTH
Block).

• The Block Information option allows the definition of matrix blocks. The user has
to specify the initial state of a block, the size of a block and the total number of blocks
with this size. The button Generate Output generates a file with (the extension of
this file is .blocks). This file will be used as input for a solution method based on
the block elimination (e.g. block GTH).

5.3 Where to Go Next

The next chapter will present some examples that will be useful to explore the power of
the Model Environment Module of the TANGRAM-II tool.

Chapter 6

Traffic Modeling

6.1 Introduction

The modeling and analysis of computer network traffic has been an area of extensive
research over the last ten years, as new multimedia applications over the Internet become
common.

In order to conduct a performance study, several steps are needed [34]. First, one must
understand the characteristics of the traffic competing for the resources under investigation.
We can: (a) analyze measurements taken from the actual aggregated traffic of an existing
network; (b) and/or focus on traces of traffic, for instance a trace from a given application
such as voice and video transmission; (c) or concentrate on different “classes” from a given
application. (For instance, for video transmission application, the classes of action movies,
or the class of lectures, etc.)

A large number of models have been proposed in the literature. They include Markovian
models, and models that possess long-range dependence. The user should be able to use
these traffic models as input to a model that includes the system resources in order to
conduct performance studies.

The TANGRAM-II environment provides a set of tools to measure traffic, obtain de-
scriptors, and experiment with different models. The modeler is able to: (a) use statistics
from real traces; (b) choose from different traffic models (which includes Markovian, FBM
and FARIMA models); (c) calculate descriptors from the models to be able to match pa-
rameters and/or verify statistical differences from the model to the measured data; (d)
create a “complete” performance model which includes the traffic model and the resources
under study; (e) solve it via simulation or analysis and; (f) conduct experiments with traffic
generators over a laboratory environment.

The TANGRAM-II modeling environment includes traffic modeling tools and a traf-
fic generator, that are integrated with the simulation and the analytical modeling tools.

71

72 CHAPTER 6. TRAFFIC MODELING

6.2 Traffic Modeling

The tool can calculate statistics from a pre-recorded stream (trace). The module accepts as
input, for instance, the number of bytes per a given interval and produces first and second
order statistics as output. The first-order statistics are: average traffic rate (bits/time unit),
variance, and burstiness. The second order statistics are: autocovariance, autocorrelation,
and index of dispersion per count. The IDC(t) for instance, is obtained, for a finite data set,
by dividing the set into non-overlapping intervals and taking these intervals as different
sample paths for the random process N . In the interface we call “window” the non-
overlapping intervals. We can also obtain other measures, such as the fraction of time
above a given rate.

Let X(n) be the nth sample of your trace file.

• The autocorrelation is given by

autocor(τ) =
E[X(n)X(n + τ)] − E[X(n)]2

E[X(n)2] − E[X(n)]2
. (6.1)

• The autocovariance is given by

autocov(τ) = E[X(n)X(n + τ)] − E[X(n)]2. (6.2)

• The IDC is given by

IDC(τ) =
E[N(kτ)2] − E[N(kτ)]2

E[N(kτ)]
, (6.3)

where N = {N(kτ), kτ ≥ 0} is a stationary process that counts the amount of data
in the interval [0, kτ], with k ∈ [0, Number of points]. As your trace is a sample
path, not a stationary process, it will be split into several windows (sample paths).

Figure 6.1 shows the interface to compute some statistics from a pre-recorded stream.

The parameters to be given are:

Trace Name The name of the file that contains the pre-recorded stream.

Number of samples Number of samples in the trace file.

Time Scale Time between two consecutive samples in the trace (∆t).

Maximum Time Lag The measure will be computed from 0 to this value.

Number of points The total number of observation points, from zero to maximum time
lag. Note that τ = Maximum time lag/Number of points.

6.2. TRAFFIC MODELING 73

Figure 6.1: Interface to obtain traffic statistics from a trace

Input Values • Sample: X(n) = sample, where sample are the sample values given
in your trace.

• Sample/Time scale: X(n) = sample/∆t.

Interval between windows The interval between two consecutive windows: it can be
an exponential random variable or zero. It is used for the computation of IDC.

Notice that ∆t and τ are related. It does not make sense, for example, to set ∆t = 2 and
τ = 1, as there is no sample at odd times. For these mistakes, Tangram II prints an error
on your terminal window.
NOTES:

1. Your trace file should contain just the sample values. The tool assumes that they are
evenly-spaced by ∆t.

2. When a time scale does not make sense, as in calculating the autocorrelation of a
delay trace, set ∆t to 1.

If the traffic model is Markovian, first and second order statistics can be obtained using the
recursions given in [29]. The overall model containing the traffic model plus the network
resources model can be built using TANGRAM-II. TANGRAM-II also calculates several
measures of interest, such as loss probabilities.

74 CHAPTER 6. TRAFFIC MODELING

Figure 6.2: Interface to obtain traffic statistics from a markovian model

Figure 6.2 shows the interface to compute some statistics from a Markovian model. The
parameters Initial Probability, Time Intervals, and Precision have to be provided
for second-order statistics only. The parameter Reward Name is the name of the reward in
the model that will be used to calculate the traffic model statistics (in general, the reward
represents the traffic source rate). The parameters to be given are:

Initial Probability This specifies the probability vector at time zero:

• Equiprobable All states in the model have the same initial probability.

• Initial State The initial state specified in the model has initial probability 1,
and all other states have initial probability 0.

• Equiprobable Set Each state in the set specified has the same initial probabil-
ity.

Time Intervals The intervals at which to compute the traffic model statistics:

• Initial Time The first observation point; this time must be greater than zero.

• Final Time The last observation point.

• Number of points The total number of observation points in a time interval,
including the initial and the final time.

6.3. CONNECTION ADMISSION CONTROL (CAC) ALGORITHMS 75

Precision Error bound.

The user is not limited to Markovian traffic models. The TANGRAM-II simulator allows
the specification of inter-event times obtained from samples from FARIMA or FBM pro-
cesses. In this case the user must specify the mean rate, variance, time scale, and Hurst
parameter.

From either the Markovian models or the FARIMA Distributions, FARIMA and FBM
Distributions, FBM, second order statistics can be obtained, by direct recursions (if the
model is Markovian) or from a trace generated by the simulator.

6.3 Connection Admission Control (CAC) Algorithms

CAC algorithms should predict the fraction of the network resources that will be consumed
by the traffic generated by each application. One of the most important resources is channel
bandwidth. The problem of bandwidth allocation, in particular in ATM environments, has
been addressed in a number of works.

Traffic descriptors, in particular those standardized by the ATM forum (UPC), play an
important role in conveying the minimum amount of traffic information to the algorithms.
Briefly, in many of these works, the loss probability is estimated based on the traffic
descriptors and amount of available bandwidth.

The CAC module implements two CAC algorithms [31, 38], which are useful to provide a
basis for comparison against laboratory measurements and other possible CAC algorithms.
The CAC module calculates the effective capacity and the number of admitted sources
based on the traffic descriptors specified by the user, the buffer size, link capacity, and the
desired QoS. As shown in Figure (6.3) the user can specify the following parameters:

Transmission Capacity This parameter specifies the transmission capacity of network
node in (bytes/s).

Buffer Size The size of the buffer in bytes, used in the effective capacity calculations.

QoS - Loss Probability The desired loss probability.

The traffic descriptors used for each CAC algorithm are as follows.

6.3.1 Regulated Traffic Algorithm

Source Peak Rate The source peak rate in bytes/s.

Source Average Rate The source average rate in bytes/s.

Maximum Burst Size The maximum burst size or the leaky bucket size in bytes.

76 CHAPTER 6. TRAFFIC MODELING

6.3.2 Non-Regulated Traffic Algorithm

Source Peak Rate The source peak rate in bytes/s.

On-Off Rate The transition rate from on to off.

Off-On Rate The transition rate from off to on.

Figure 6.3: Interface of Tangram-II to CAC algorithms

6.4 Where to Go Next

In this chapter we introduced the Traffic Modeling module of the Tangram-II tool. This
module offers several possibilities to the user, such as: (a) use statistics from real traces;
(b) choose from different traffic models (which includes Markovian, FBM and FARIMA
models); (c) calculate descriptors from the models to be able to match parameters and/or
verify statistical differences from the model to the measured data; (d) create a “complete”
performance model which includes the traffic model and the resources under study; (e)
solve it via simulation or analysis, and (f) conduct experiments with traffic generators over
a laboratory environment. We also encourage the user to go through the Traffic Generation
tool, which will be described in the next chapter.

Chapter 7

Traffic Generator Tool

7.1 Introduction

One of the main goals of teletraffic engineering is to be able to predict, with sufficient accu-
racy, the impact of the traffic generated by the applications on the network resources, and
evaluate if the required QoS is being achieved. With the increasing demand for multimedia
applications, to know the internal network characteristics became essential for improving
the quality of these applications. Loss, consecutive loss, round-trip-time (RTT), one-way
delay (OWD), jitter, bottleneck bandwidth, bottleneck buffer size, drop rate, among oth-
ers, are some of those network characteristics commonly measured. To discover these
parameters, methods have been proposed.

The Tangram-II Traffic Generator is a powerful tool for discovering network charac-
teristics. In the first version, the tool was able to estimate only some basic parameters
(jitter, loss, and consecutive loss). However, the current version is able to estimate many
others. Beside the parameters mentioned before, the Tangram-II Traffic Generator has
implemented methods to estimate bottleneck bandwidth, one-way delay, bottleneck buffer
size, drop rate, and other network measures. To estimate some of these metrics, state-
of-the-art algorithms were implemented inside the Tangram-II Traffic Generator source,
as for example the methods to estimate the one-way delay without any synchronization
devices.

The Traffic Generator developed is capable of injecting packets in the network at inter-
vals in accordance to the user specifications. It supports UDP/IP and native ATM through
the ATM adaptation layer (AAL5). When UDP/IP is chosen the tool employs the BSD
socket standard. Traffic for native ATM is supported using the API developed by Werner
Almesberger (available in [1, 2]) for Linux. However, to make available the ATM genera-
tion interface, the tool employs a check to verify some dependences. The traffic generator
interface is shown in Figure 7.1.

Warning: Special care must be taken for a very high UDP traffic generation rate.

77

78 CHAPTER 7. TRAFFIC GENERATOR TOOL

Figure 7.1: Interface Tangram-II to Traffic Generator.

Losses may occur even at local output buffer.

As mentioned above, with Tangram-II Traffic Generator many measures of interest
may be obtained. To estimate so many metrics, different directions and models for the
probe generations are required. These requirements make the tool structure to be directly
related to them. The actual tool structure is illustrated by the Figure 7.2.

7.1.1 Using Tangram-II Traffic Generator

Before using the Tangram-II Traffic Generator, the user must decide what measures of
interest he wishes to estimete. The metrics to be estimated depend directly on a correct
probe generation. For each set of measures, a certain model and direction of probe gener-
ations will be used by the tool. Figure 7.2 shows the possible metrics collected from each
type of measurement, and the graffical user interface of the tool is shown in Figure 7.1.

7.1.1.1 Probe Generation Direction

• One-way Measurement(Set1): In this measurement format, probes are sent from a
source up to a destination. This type of measurement supplies simple metrics as
results. As mentioned before, only the parameters not relative to different clocks
may be estimated by this way.

7.1. INTRODUCTION 79

TANGRAM-II
Traffic Generator

SET-1
One-way Measures

SET-2
Two One-way Measures

SET-3
Round Trip Measures

CBR Markov Trace CBR Packet
Pair

CBR Markov Trace Packet
Pair

Probes Generation
Direction

Probes Generation
Model

* 1-way Delay
* Jitter
* Loss
* Consecutive
 Loss
* Success
* Throughput

* 1-way Delay
* Bottleneck
 Capacity
* Loss Pair
* Buffer Size
* Drop Rate

* RTT
* Jitter
* Loss
* Consecutive
 Loss
* Success
* Throughput

* RTT
* Loss
* Consecutive
 Loss
* Success
* Throughput

* RTT
* Loss
* Consecutive
 Loss
* Success
* Throughput

* RTT
* Bottleneck
 Capacity
* Loss Pair
* Buffer Size
* Drop Rate

* Jitter
* Loss
* Consecutive
 Loss
* Success
* Throughput

* Loss
* Consecutive
 Loss
* Success
* Throughput

* Loss
* Consecutive
 Loss
* Success
* Throughput

Figure 7.2: Tangram-II Traffic Generator Structure.

• Two One-way Measurement(Set2): To obtain measures considering different clocks, it
is necessary to send probes in two ways. In this measurement module, two hosts send
probes to each other. Two one-way probe generations are started at the same time
and in opposite direction. For this reason the method is called Two one-way. With
the variation in the size of packets, this measurement format allows the application
of algorithms to remove Skew and Offset from the traces.

• Round-trip Measurement(Set3): In this option, the Tangram-II Traffic Generator
works like a Ping tool, but in an application layer level. The Probes are sent from
a network point to another host; when received by this remote host, the packets are
echoed (by the application) to the sender again. It is important to note that in this
format there is no problem with clocks. The sending and receiving clocks are the
same, given that the timestamps are from the same machine.

7.1.1.2 Probe Generation Model

• Constant Bit Rate (CBR): In this case, the traffic is generated as a deterministic
model and the interval between packet generation is constant. Depending on the
probe generation format and the measures of interest, the size of packets may be
varied in this model.

• Markov Modulated: The traffic is generated according to a continuous-time Markov
reward model with finite states space. In this case a reward rate is associated to each
state in the model. Let rj be associated to state j. Then the transmission rate when
the model is at state j is rj bps. The model can be specified using the Tangram-II

80 CHAPTER 7. TRAFFIC GENERATOR TOOL

modeling environment [6, 20], that generates the state transition rate matrix for the
model and associated reward rates. (Any other tool can be used to generate the
transition matrix, provided that the file format is that required by the generator.)

The traffic generator tool first obtains the state transition probability between any
two states as follows. Let ∆j be the sum of the output rates out of state j, that is,
∆j =

∑

k λj,k, where λj,k is the transition rate from state j to k. Then the transition

probability from state j to k is Probj,k =
λj,k

∆j
.

Assume that the system is at the state j. Since the amount of time in j is a random
variable exponentially distributed with rate ∆j, a sample of this random variable is
first generated. Clearly, the number of bytes that must be sent till be next transition
is rj∆j. The traffic generator then generates a random sample to determine the next
state from the state transition probabilities (the Pj,k) and the process continues till
the total generation time is reached.

• Trace: The tool can generate the traffic based on a trace file. This trace must be in a
specific format, where each line contains in the first collum the amount of time since
the last packet sent and in the second collum the packet size. It is important to note
that the trace file can be obtained from a simulator or from any real multimedia data
such as from a video coded in MPEG. Especific tools can generate these trace files
from a MPEG video file. The Tangram-II simulator is completely integrated with
the traffic generator and, if this is the simulator of choice, the modeler can generate
traffic with different characteristics including long range dependent traffic models
such as FARIMA and FBM. Therefore, a wide range of options is available to the
user.

• Packet Pair: Similar to the CBR generation, this module can generate traffic in a
constant interval. But, in spite of only one packet, a pair of them is sent. Also as in
the CBR model, depending on the probe generation format, the size of packets may
be varied in this model.

7.1.1.3 Generating Traffic Features

Generating CBR traffic from Set 1 and Set 2, the user can specify the size L of the packets
to be transmitted, the total generation time T , and the number of bytes for frame D.
The amount of traffic is specified in terms of frames. Clearly, the number of packets N
generated per frame depends of frame size and packet size, that is N = D

L
.

The generator supports ATM traffic generation only using Set 1. However, IP traffic
is supported by all other generation set. In IP option the host name and destination port
must be given. In ATM option, VPi, VCi and the Traffic Classes UBR or CBR must be
specified, For CBR traffic only the peak rate must be input. For Markov modulated traffic,
the model name must be provided.

7.1. INTRODUCTION 81

In Set 1, the packets generated from CBR and Markov Modulated models a frame can
be transmitted in two forms: they are either sent one after another at the beginning of
the frame generation interval or each packet is sent uniformly spread over the interval.
The choice is made using the option Interval between packets. (min indicates that packets
are transmitted in sequence at the link rate, as shown in Figure 7.3, and max indicates
that packets are uniformly spread during the interval between two frames, as indicated in
Figure 7.4.)

tt-1t-2 time

tx usleep usleeptx

Frame Frame

Inter Frame time Inter Frame time

Figure 7.3: Generation mode - min

tt-1t-2 time

tx tx

Frame Frame

Figure 7.4: Generation mode - max

It should be observed in Figure 7.3 that the generation process sleeps between two con-
secutive frames. In this case, after transmitting the last packet of a frame, the generator
calculates the residual time till the beginning of the transmission of the next frame. If
the residual time is positive, then the usleep() system call is executed, otherwise the next
frame is transmitted immediately. Note that only one usleep() system call is executed for
each frame, and no busy wait is used. The Figure 7.4 shows the packets being transmitted
uniformly over the interval between frames. In this case, the generation process sleeps after
transmitting each Packet.

The user can launch a remote traffic receiver, using the receiver options as shown in
Figure 7.1. The IP Traffic Receiver captures the packets sent by the traffic generator and
creates a trace file, used to calculate statistics. This module requires the destination host
and UDP port.
Warning: Make sure the firewalls of the sender and receiver machines are open for the

82 CHAPTER 7. TRAFFIC GENERATOR TOOL

chosen UDP port before generating traffic.
The parameters to be given are:

Remote Login - This parameter specifies the user remote login. The user needs a remote
account, as well permition to execute the receiver binary traffgen recv on remote
host.

Local Trace File Name - The name of trace file that will be generated by the IP Traffic
Receiver. The trace collected is sent back to the machine that launched the receiver
(and generated traffic), and stored in the file Local Trace File Name, specified in
the parameter.

Shell Command - This specifies the type of remote connection. The user can choose
security connection (ssh) or just remote connection (rsh). Please see the respective
man pages for details. The remote machine needs to provide a connection for user’s
authentication. ssh allows configurations to avoid asking for passwords, see tips
below.

Receiver Directory - The receiver binary files must be copied to directory at the remote
account. If it has already been done, the path must be indicated. Otherwise, the
TANGRAM2 HOME environment variable will be considered.

Generate compressed trace - The trace file can be sent compressed from the IP Traffic
Receiver to the local machine if this option is selected.

Tips: The ssh client can perform a login without asking for a password. In the remote
user’s home create the file .ssh/environment, with the line
PATH=/bin:/usr/bin:/usr/local/bin:$TANGRAM2 HOME. The file .ssh/known hosts

should contain the remote host name.

7.2 Traffic Measures

The IP Traffic Measures generate measures of interest based on the trace file created by
the Traffic Receiver.

The interface for the IP traffic measures is shown in Figure 7.5. It can be seen from
the figure that we can obtain several types of measures: loss, success, throughput, jitter,
band capacity, buffer size, drop rate and delay. The measures that can be estimated from
a trace depend on the traffic generation model adopted.

7.2.1 Measure Parameters

Primary Trace File - This parameter (the TraffGen output) can be passed by text filed
or file chooser (search only TraffGen trace files in the current directory, but it is
possible to change it).

7.2. TRAFFIC MEASURES 83

Figure 7.5: Interface of Tangram-II to IP traffic measures

Second Trace File - Depending on the Primary Trace File chosen, this parameter
becames available. Some metrics, such as One Way Delay, need both traces to be
estimated. As above, the file name can be passed by text field or file chooser.

Output File Name - Optional parameter used to substitute out in the output file name.

Measure Options - Allows user to choose measures.

Evaluate - Allows user to evaluate the chosen measures.

Plot - Allows to plot evaluated traces.

Close - Return to the Measures window.

Note 1: If the packets arrive out of order, they are considered lost. Duplicate packets are
discarded.
Note 2: The jitter measure is enabled only if the trace was generated with maximum
interval between packets (Max button at bottom left of the Traffic Generator interface) and
using the CBR model.

7.2.2 Plotting the output of measures

The Plot window contains some important characteristics, as shown in Figure 7.6. The
top left list displays all traffgen measures in the current directory. Some information about
the selected file is shown in the text area. The right side contain some buttons:

Properties - Allows user to configure the graphics.

Delete - Remove selected file

84 CHAPTER 7. TRAFFIC GENERATOR TOOL

Figure 7.6: Interface of Tangram-II to Plot statistics measures

Delete all - Remove all files in the currently directory.

GNUPlot - Plot the selected trace. Several traces may be selected.

View File - Uses the default text editor to open the selected file.

Hist/MSE - Opens Histogram generation and MSE estimation window.

Close - Return to the Measures window.

7.2.3 Histogram generation and MSE estimation

The interface for the Histogram generation and MSE estimation is shown in Figure 7.7.
From this window is possible to plot a histogram from the selected trace. It is also possible
to compare the trace distribution with the selected distributions. The user can select if
the MSE method for those distributions must be used to select the best distribution to
represent the results. The plot selection defines the mode of visualization.

The result of MSE, after estimation, is shown in the textbox. At the bottom left of the
window there are some buttons with functions already explained.

7.3 Measuring with Tangram-II Traffic Generator

In this section we present a few results obtained by the Tangram-II Traffic Generator.
Results are presented from each probe generation model. First we demonstrate measures
taken from a one-way traffic generation. Later, measurements from the two one-way set
are presented, including offset and skew removal. Round trip measures and comparative
results, between round trip and the two one-way measures, are shown to give an insight
about the validity of the offset and skew removal.

7.3. MEASURING WITH TANGRAM-II TRAFFIC GENERATOR 85

Figure 7.7: Interface of Tangram-II to Histogram genaration and MSE estimation

The only purpose of the results presented here is to show the tool’s functionality and its
possible parameter estimations. We do not intend to present any conclusive result about
the Internet or IP network characteristics.

7.3.1 Measuring in One-way

In this case, the traffic is generated in a single direction. From these traces only a few
basic parameters can be estimated. We show that some other measures of interest can be
estimated if these traces are collected in parallel with other techniques.

Using Set1, from Tangram-II Traffic Generator, traffic was generated from a MPEG
trace file. With specific tools, videos in a MPEG format became traces of the frame size of
a video file. One of these MPEG traces was used as input in a traffic generation between
UFRJ and University of Massachusetts at Amherst. From the collection, the likelihood of
consecutive loss and consecutive success was estimated by the tool. These estimations are
shown in Figure 7.8, (A) and (B) respectively.

7.3.2 Measuring in Two One-way

Certain measures of interest need simultaneous and opposite directions in traffic generation.
In Set2 of the Tangram-II Traffic Generator the user is allowed to apply this kind of
measure.

From the collections, important measures of interest are estimated by the tool. After
collecting the traffic, the estimated delay is usually not accurate, because of the problems

86 CHAPTER 7. TRAFFIC GENERATOR TOOL

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

"Video_loss_pdf.trace"

Num of Packet Lost

P
[lo

ss
]

PMF - Consecutive Loss

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700

PMF - Consecutive Success

P
[s

uc
ce

ss
]

Num of Packet Lost

"Video_success_pdf.trace"

(A) (B)

Figure 7.8: PMF of loss (A) and success (B) of videos packets.

with different clocks. These problems are shown in Figure 7.9A. However, algorithms
[36, 47] are implemented in the tool to solve the Offset and Skew problems. The one-way
delay of the probes, after applied to the algorithms in the initial trace, is shown in Figure
7.9B. A PMF estimation of the delay tried by the probes in both directions is shown in
Figure 7.9C.

 2.555e+07

 2.56e+07

 2.565e+07

 2.57e+07

 2.575e+07

 2.58e+07

 2.585e+07

 2.59e+07

 2.595e+07

 2.6e+07

 2.605e+07

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

One-way delay of probe generation
with skew and offset

D
el

ay

Packet sequence number

"UFRJ_UMASS.trace"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 50000 100000 150000 200000 250000 300000 350000 400000

UFRJ->UMASS

UMASS->UFRJ

Delay

P
[D

el
ay

]

PMF - Packet Delay

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

One-way delay of probe generation
after removing skew and offset

D
el

ay

Packet sequence number

"UFRJ_UMASS.wso.trace"

(A) (B) (C)

Figure 7.9: Delay calculation of probes generation: (A) with Skew and Offset, from one of
the traces (B) After removing Skew and Offset, from one of the traces (C) Histogram of
delay probability with both traces.

7.3.3 Measuring in Round Trip

Also implemented in the Tangram-II Traffic Generator, the measurement in Round trip
way allows the user to estimate parameters in this probe generation model. As shown in
Figure 4, using this technique it is possible to estimate many measures of interest, but
in this case they refer to the coming and going of the probes. Figure 7.10 shows a PMF
estimation of the round trip time from several probes sent from UFRJ and echoed by
UMASS to the sender again.

7.3. MEASURING WITH TANGRAM-II TRAFFIC GENERATOR 87

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000

"round_trip_delay_pdf.trace"

Delay

P
[D

el
ay

]

PMF - Round Trip Delay

Figure 7.10: Round Trip Delay from packets generated at the same instant of the One-way.

The initial purpose of implementing the round trip module was to compare its results
with the one generated by the Two one-way set. However, several metrics may also be
estimated using this measurement.

We suppose that generating both measurements together may give us an insight about
the accuracy of the one-way estimation. In this way, we believe that measuring the round
trip delay and the OWD at the same time makes it possible to avaliate the correctness of
the Offset and Skew removal. To consider a correct estimation, not only the mean delay
obtained from the round trip measurement and the sum of both one-way measurement in
oposite directions should be close, but also the convolutions of both PMF curves estimated
by one-way delay must be close to the curve generated by round trip delay. Figure 7.11
shows in (A) the closeness of both PMF estimations (RTT and convolution function).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Convolution
RTT

Delay

P
[D

el
ay

]

PMF - Round Trip Delay and
Convolution of Two One-way Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Convolution
RTT

Delay

P
[x

 <
 D

el
ay

]

CDF - Round Trip Delay and
Convolution of Two One-way Delay

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Convolution
RTT

Delay

P
[x

 <
 D

el
ay

]
Lo

gs
ca

le

CDF - Round Trip Delay and
Convolution of Two One-way Delay

(A) (B) (C)

Figure 7.11: Comparison between Delay calculations: (A) PMF, (B) CDF.

Figure 7.11 also shows in (B) and (C) the closeness of both curves, but in this case in
the form of the cumulative distribution function (CDF). In (c) a log scale is applied to the
y-axis.

88 CHAPTER 7. TRAFFIC GENERATOR TOOL

7.3.4 Estimating delay distribution

The one-way delay results obtained by the tool may be used to estimate a best distribution
for characterizing the behavior of this metric during the experiment. Using the simple
method of moments, parameters of the distributions are estimated. The distributions esti-
mated are plotted beside the trace collected in the attempt to identify the best distribution
for characterizing this collection. A simple example of this estimation is shown in Figure
7.12, where only three distributions were used. Methods like mean squared error have been
implemented to aid in identyifing the distribution with best fit.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000

Trace UMASS->UFRJ
Exp

Gaussian
Pareto

Delay

P
[D

el
ay

]
Lo

gs
ca

le

CDF - Fitting distributions

(B)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 50000 100000 150000 200000 250000 300000 350000 400000

Trace UFRJ->UMASS
Exp

Gaussian
Pareto

Delay

P
[D

el
ay

]
Lo

gs
ca

le

CDF - Fitting distributions

(A)

Figure 7.12: Estimating distribution of delay tried by probes: (A) UFRJ-UMASS (B)
UMASS-UFRJ.

7.4 References

1. Some important references about traffic generation: [6, 20, 3, 37, 40, 41, 42]

Chapter 8

Hidden Markov Models Module

8.1 Introduction

A hidden Markov model (HMM)[39] is a statistical model commonly used to represent
systems whose observable outcomes depend on the system’s states, which are, themselves,
not directly observable. HMMs have become very popular in several different fields, such
as speech recognition, bioinformatics and computer networks.

Tangram-II’s HMM Module allows users to create and work with two different classes of
hidden Markov models: regular hidden Markov models[39] and hierarquical hidden Markov
models[44]. The regular HMM has, associated with each state, a probability distribution
which determines the symbol’s emission in that state. The hierarchical HMM, on the other
hand, has associated with each state a Markov chain, which is responsible for the symbol
emissions. TANGRAM-II supports four different types of HMMS (the regular HMM and
three different hierarquical HMMs), and each is described, in details, in sections 11.5.3,
11.5.4, 11.5.5 and 11.5.6 of this manual.

In this chapter, we explain how an HMM model can be created with TANGRAM-II,
and what interesting metrics can be generated with it.

8.2 Creating Hidden Markov Models with TANGRAM-II

When creating an HMM, the most cumbersome job is designing its chain structure (or
structures, if the HMM is hierarchical). This is especially true when the chain has a
large number of states. Imagine having to specify, manually, every transition of a 30 state
hidden Markov model. This means you would have to write 30× 30 = 900 values! For this
reason, TANGRAM-II allows the user to create a hidden Markov model chain structure
with Tangram-II’s Model Specification Module, using the objects therein, and load it
directly into the HMM Module.

The basic idea behind this method is to have the HMM Module interpret the state tran-

89

90 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

sition matrix created by TANGRAM-II for the model designed by the user, and, from it,
extract the necessary information to assemble the hidden Markov chain. So all the user
has to do is build his hidden Markov model in TANGRAM-II, using its objects, events,
and messages, have TANGRAM-II generate the state transition matrix that represents it
and, finally, have the HMM Module load the created HMM model. Next, we will explain
how this can be done, using a simple example.

The first step is to open Tangram-II’s Model Specification Module, shown in Figure
8.1(b). This can be done by clicking the Model Specification button, in Tangram-II’s
Modeling Environment, shown in Figure 8.1(a). Now, we can create our Markov model

(a) (b)

Figure 8.1: Opening Tangram-II’s Model Specification Module

just like we would create a normal Tangram-II model. Let’s have a look.

Suppose we want to create a hierarchical Gilbert hidden Markov model (a description
of this type of HMM can be found in section 11.5.4 of this manual and in the work of [44])
with 30 hidden states, and the following characteristics:

i) Every transition (Si, Si+1), in the hidden (upper-level) chain, occurs with a 0.5 prob-
ability. If Si is the chain’s last state, there is a transition to itself, also with a 0.5
probability.

ii) Every transition (Si, Si−1), in the hidden (upper-level) chain, occurs with a 0.4 prob-
ability. If Si is the chain’s first state, there is a transition to itself, also with a 0.4
probability.

iii) Every transition (Si, Si), in the hidden (upper-level) chain, occurs with a 0.1 proba-
bility.
Note: The transitions defined here do not expunge the transitions defined in (i) and
(ii), for the first and last states. Thus, transition (S0, S0) = 0.1 + 0.4 and transition

8.2. CREATING HIDDEN MARKOV MODELS WITH TANGRAM-II 91

(SN , SN) = 0.1 + 0.5, where S0 represents the first state and SN represents the last
state.

iv) There are no other transitions in the hidden chain, i.e, all other transitions have a 0.0
probability of occurring.

v) In every hidden state Si, the transition probability from lower-level state I0 to lower-
level state I1 is 0.9, and the transition from lower-level state I1 to lower-level state I0
is 0.5.

vi) In every hidden state Si, the probability of starting in lower-level state I1 is 0.7.

Let’s start by building the upper-level chain. To this purpose, we will use the Markov Chain

Tangram-II object, illustrated in Figure 8.2. This object defines, by default, the state vari-
able N , which describes the states of the Markov chain, and the constans FWD RATE,
BCK RATE and MAX CHAIN SIZE which describe, respectively, the transition rate
from state Si to state Si+1; the transition rate from state Si−1 to state Si; and the total
number of states of the chain. Since the upper-level chain we are looking to build has 30
states, our first step will be to set MAX CHAIN SIZE = 291. Next, we will specify the
transition probabilities between the chain’s states.

Every event in TANGRAM-II has a rate associated with it, which defines the rate
at which the event occurs. When reading the state transition matrix created by
TANGRAM-II, which specifies the rate at which transitions occur, the HMM

Module will assume that every rate is, actually, a probability. For this reason,
it is easy, for the user, to specify the transition probabilities for the Markov chain he
is creating. All he has to do is set the rate of the event which describes the transi-
tion to the same value as the probability he wishes that transition to have. Thus, in
our case, the event that describes transitions (Si, Si+1) (the Forward Transition event)
will have its rate set to 0.5, which can be done by assigning this value to the con-
stant FWD RATE. Similarly, the event which describes transitions (Si, Si−1) (the Back-
ward Transition event) will have its rate set to 0.4, which can be done by assigning this
value to the constant BCK RATE. The two remaining events in the Markov Chain ob-
ject, ZerotoZero Transition event and NtoN Transition event, will have to have their rates
changed to BCK RATE and FWD RATE, respectively, in order to satisfy the chain
border conditions described in (i) and (ii).

This takes care of characteristics (i) and (ii). Figure 8.3(a) shows our Tangram-II
model so far, and Figure 8.3(b) shows the upper-level Markov chain we have created up to
now, by using the Markov Chain object.

To finalize our upper-level chain, there is, still, one thing left to do: address character-
istic (iii). To this purpose, we will create a new event, in the Markov Chain object, which
we will call Same ST, that does not change the value of the state variable N. Its rate will

1Remeber that Tangram-II’s variables start from 0.

92 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

...0 1 N

name=Markov_Chain

Watches=
N

Figure 8.2: Tangram-II’s Markov Chain object.

Hidden states

...0 1 N

name=Markov_Chain

Watches=
N

(a)

...

0.5 0.5 0.5

0.5

0 1 29

0.4 0.4 0.4

0.4

(b)

Figure 8.3: (a)Tangram-II model with the Markov Chain object, and (b) the partial upper-
level Markov chain created with it.

have, of course, the same value as the transition probability we specified in characteristic
(iii), which is 0.1.

event = Same_ST(EXP, 0.1)

condition = (TRUE)

action =

{

int n;

n = N;

set_st("N", n);

};

An so, we have finished building our upper-level Markov chain. Our next step will be
to assemble the hierarchical chain, i.e., the Gilbert model that we want to put inside each
hidden state. To build it, we will use the On Off Source object from TANGRAM-II. It
will have one state variable, called Status, which will indicate the state that the model is
currently in (if it is in state I0 or I1), and four events. Each event will describe one possible
transition of the chain, i.e., transitions I0 to I1, I0 to I0, etc., and will have its rate set
accordingly to (v), as shown below:

8.2. CREATING HIDDEN MARKOV MODELS WITH TANGRAM-II 93

Events=

event = I0_to_I1(EXP, 0.9)

condition = (Status == 0)

action =

{

int status;

status = 1;

set_st("Status", status);

};

This takes care of characteristic (v), and now there is only characteristic (vi) left. In a
hierarchical model, every lower-level state has an initial probability, i.e, a probability of be-
ing chosen as the starting state, once a transition to its upper-level state has happened. For
this reason, the On Off Source object needs to know when the upper-level chain has made
a transition, so it can choose its initial state. In order to do this, we will have to introduce
a slight modification in the Markov Chain object events. Every time a hidden transition
event happens, it will have to send a message to the On Off Source object, informing it
that a upper-level transition has happened. So, as an example, the Forward Transition

event of the Markov Chain object will have a message routine introduced to it as follows:

Events=

event= Forward_Transition (EXP, FWD_RATE)

condition= (N < MAX_CHAIN_SIZE)

action =

{

int n;

n = N + 1;

/* Send message to lower-level chain */

msg(LOWER_LEVEL_PORT, all, n);

set_st("N", n);

};

and the On Off Source object will deal with it in the following way:

Messages=

msg_rec = LOWER_LEVEL_PORT

action =

94 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

{

set_st("Status", 0);

} : prob = 0.3;

{

set_st("Status", 1);

} : prob = 0.7;

And we are done! Figure 8.4(a) shows the model we have just created in TANGRAM-II,
and Figure 8.4(b) its corresponding hierarchical Gilbert hidden Markov chain structure.

...0 1 N

name=Markov_Chain

Watches=
N

Hidden states

Internal chain

 0 1

Watches=
Status

name=Gilbert

(a)

...

0.5 0.5 0.5

0.5

0.4 0.4 0.4

0.4

0 1

0.9

0.5

0 1

0.9

0.5

0 1

0.9

0.5

0.1 0.1 0.1

(b)

Figure 8.4: (a)Tangram-II model created. (b)Hierarchical Gilbert hidden Markov model
build with the model of (a).

This concludes the structure design part. But before loading this model into the HMM

Module, TANGRAM-II has to, first, generate the state transition matrix of the model.
This can be done with Tangram-II’s Mathematical Model Generation module, shown in
Figure 8.5.

8.3 Loading a Hidden Markov Model into the HMM Module

Once the model is generated by TANGRAM-II, the user may, finally, load it into the HMM

Module. To open the HMM Module, just click in the HMM Module button, shown in Figure
8.6(a). This will open the first window of the HMM Module interface, which is shown in
Figure 8.6(b).

8.3. LOADING A HIDDEN MARKOV MODEL INTO THE HMM MODULE 95

(a) (b)

Figure 8.5: Mathematical Model Generation Module (a) selection button; (b) state space
generation interface.

(a) (b)

Figure 8.6: HMM Module (a) selection button; (b) model selection interface.

96 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

In the first window of the HMM Module interface, the user may select which type of hid-
den Markov model he wants to work with. As stated previously, the HMM Module supports
four types of HMMs, described below:

1. Hidden Markov Model: a regular HMM which has, associated to each state, a
symbol emission probability distribution.

2. Hierarchical Gilbert Hidden Markov Model: a hierarchical HMM which has,
associated to each state, a Gilbert Markov model, which is responsible for the symbol
emissions. This model has a fixed batch size (number of symbols emitted between two
transitions in the hidden chain) whose value is determined by the user. An example
of this model is illustrated on Figure 11.3.

3. Hierarchical General Hidden Markov Model - Fixed Batch: a hierarchical
HMM which has, associated to each state, a custom Markov chain, which is respon-
sible for the symbol emissions. This model has a fixed batch size (number of symbols
emitted between two transitions in the hidden chain) whose value is determined by
the user. An example of this model is illustrated on Figure 11.4.

4. Hierarchical General Hidden Markov Model - Variable Batch: a hierarchical
HMM which has, associated to each state, a custom Markov chain with an absorbing
state, which is responsible for the symbol emissions. This model has a variable batch
size (number of symbols emitted between two transitions in the hidden chain) whose
value is determined by the number of transitions (in the lower-level chain) it takes
to reach the absorbing state. An example of this model is illustrated in Figure 11.5.

After choosing one of these models, the HMM Module will load the chain structure designed
by the user in the Model Specification Module. To see how this can be done, let’s
continue with the example we have been working on.

Recall that, in section 8.2, we designed a hierarchical Gilbert hidden Markov model,
whose structure is illustrated in Figure 8.4(b). Thus, when opening the HMM Module inter-
face, we will choose the Hierarchical Gilbert Hidden Markov Model option, as shown
in Figure 8.6(b), and click OK. This will open the second HMM Module interface, shown in
Figure 8.7(a). In it, the user will have to specify which of his Tangram-II model’s state
variables correspond to the chain’s upper-level states, and which correspond to the chain’s
lower-level states. This is necessary in order to allow the HMM Module to correctly inter-
pret the Markov chain created by TANGRAM-II, and, consequently, accurately extract the
HMM model’s structure designed in the Model Specification Module. In our example,
recall that we used the state variable Markov Chain.N to represent the upper-level chain,
and the state variable On Off Source.Status to represent the lower-level chains. Hence,
we will choose them accordingly, as illustrated in Figure 8.7(a), and click OK.

Our HMM’s structure is now created. The only thing left for us to do is specify any
additional parameters that might be required by the model we chose to work with. This

8.3. LOADING A HIDDEN MARKOV MODEL INTO THE HMM MODULE 97

(a) (b)

Figure 8.7: HMM Module (a) state variable selection interface; (b) additional parameter
specification interface.

98 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

will be done in the third HMM Module interface, which is illustrated in Figure 8.7(b). In the
case of the hierarchical Gilbert HMM, these parameters are: initial probability of hidden
states and the batch size. Once they are specified, all you have to do is click on the Create
button, and the model you designed in Tangram-II’s Model Specification Module will,
finally, be loaded into the HMM Module.

8.4 Working with the HMM Module

Once the model is loaded, a new HMM Module interface, similar to the one illustrated in
Figure 8.8(a), will appear. It shows the user all the methods and algorithms that can be
used with the specific type of HMM model he chose to work with. These methods and
algorithms are the same ones implemented for the corresponding MTK plugins, and, for this
reason, we will not describe them here. The user who wishes to learn more about each one,
should refer to section 11.5 of this manual.

(a) (b)

Figure 8.8: HMM Module (a) method’s and algorithm’s interface; (b) chain structure
visualization.

Let’s continue with our example. As stated above, the interface shown in Figure 8.8(a)
shows us the available methods and algorithms for the hierarchical Gilbert HMM model.
To execute any of them, just click on it’s corresponding tab, specify the necessary pa-
rameters, and click on the Run button. Each method’s output will be stored in a file
(which is described in appendix ??), and it’s result can be viewed by clicking the Results
button. The HMM Module also allows the user to view every chain’s structure of his HMM
(both upper-level chain and lower-level chains) using Tangram-II’s Matrix Visualization

8.4. WORKING WITH THE HMM MODULE 99

Module. All he has to do is click on the View Matrix button and select which chain he
wishes to see. Figure 8.8(b) shows the hidden chain of the model we have created.

100 CHAPTER 8. HIDDEN MARKOV MODELS MODULE

Chapter 9

Examples

9.1 Introduction

This chapter presents simple models to exemplify the modeling paradigm, how to obtain
analytical and/or simulation solutions, and how to calculate measures of interest. All the
examples described in this chapter are in a directory named EXAMPLES.

9.2 The MMPP/Leaky Bucket Model

9.2.1 Model Description

In this example, we will model a system with three objects:

MMPP source this kind of source can generate packets with different Poisson rates. The
Poisson rate depends on the state of the source.

Leaky Bucket this is an access controller to the network. In this model, an event gener-
ates credits that will be consumed when a packet generated by the MMPP source is
transmitted. These credits are generated periodically (this event has an exponential
distribution), and are stored until a maximum of M. When a packet arrives and there
are no credits available, the packet is stored in a finite buffer.

Server Queue this object represents a queue with a server that has an exponential service
time distribution.

In this model, the MMPP source generates a packet that is sent to the Leaky Bucket and
eventually delivered to the Server Queue. If there is a credit upon arrival, the Leaky Bucket
routes the packet to the queue. Otherwise, the arriving packet is stored if there is space
available in the buffer. Figure 9.1 shows the model.

101

102 CHAPTER 9. EXAMPLES

/* This model represents a MMPP source policed by a Leaky Bucket.

The Leaky Bucket regulates the messages sent by the source to an

exponential server. */

wire_2

name=Leaky_Bucket

Watches=
 Buffer
 Credits

M

name=Server_Queue

Watches=
 Queue=0

0

1

2

name=MMPP_Source

Watches=
 Status

link_1 link_2

Figure 9.1: The MMPP Model

9.2.2 Solving the Model

In this section, we are interested in the transient behavior of the model. We will solve the
MMPP/Leaky Bucket Model using transient analysis. Our interest is the state probabilities
at different time points. This method produces an output file for each interval specified.
To solve the model, click on the Analytical Model Solution button. Choose the Transient
section and then Point Probabilities. The interface is shown in Figure 9.2.

Figure 9.2: The Point Probabilities Method.

In the next step we input the following parameters: Initial Probability, Time Intervals

9.2. THE MMPP/LEAKY BUCKET MODEL 103

and Precision. These parameters are important to solve the model.

Initial Probability - Equiprobable

Time Intervals: n 0.1 10 10

Initial Time = 0.1

Final Time = 10

Number of points = 10

Precision = 1.0e-05

The Point Probabilities method generates files that will be used to calculate the measures
of interest (e.g, probability mass function, expected value and so on). The names of the
files generated are <name of model>.<TS>.<pp>.<final time interval>.

For example, suppose that we want to know the distribution of the number of the
packets in the Leaky Bucket buffer at time t = 10. Then it is necessary to use the Mea-
sures of Interest Module (PMF of one or more state variables) and choose the appropri-
ate file with the probabilities. This file is generated by the Point Probabilities Method.
In this case, choose the file MMPP.TS.pp.1.0000000e+01 and choose the state variable
Leaky Bucket.buffer in the Choose Variables box. Click on the Evaluate button, and
on the Plot button. We can obtain the PMF of the number of the packets in the buffer
(Fig 9.3).

Buffer_Size (Leaky Bucket)

P
r
o
b
a
b
i
l
i
t
y

Figure 9.3: The Buffer size PMF

104 CHAPTER 9. EXAMPLES

9.3 Model with a Deterministic Server

9.3.1 Model Description

The second model that we present is composed by two objects: an On Off Source and a
finite queue with deterministic service time. This model is shown in Figure 9.4.

/*This model has an On_Off source which feeds a deterministic server.
It has a special object (independent_chains) to be solved using a
Non_Markovian Analytical Method.*/

/*The independent chain object is used by the Analytical Method to solve
models with deterministics events. The sintax is:
event=list of all deterministics events in the model (<name of object>.<name of deterministic event>)
chain=list of all objects in the model
WARNING: In the list above the order of the objects to be input must follow the order
displayed in the Mathematical Model Module window after pressing the extract button.*/

independent_chains=
 event= Server_Queue_Det.Service
 chain=On_Off_Source,Server_Queue_Det

port_send
D

name=Server_Queue_Det

Watches=
Queue

OFF ON

name=On_Off_Source

Watches=
 Status

Figure 9.4: The Deterministic Server Model

9.3.2 Solving the Model

To solve the model, click on the Analytical Model Solution button. Choose the Stationary
Methods → Non-Markovian Models.

Suppose, in this model, that we want to obtain the fraction of time the queue has n
customers. We then need to choose the state variable queue to calculate the measure of
interest.

Note that the “independent chains” object must be specified. In this case, there are no
objects that behave independently of each other while the deterministic event is enabled,
therefore all objects in the model are included in “chains” for this event.

The model results are stored in file <model name>.SS.NM.marginal probs. This file
includes the marginal probabilities of each state variable you select. In the file
<model name>.SS.NM.expected cycle length the expected length of the intervals be-
tween embedded points are stored.

The tool also creates other files that may be useful to the user. For instance, the user can
choose (using the interface) to generate the embedded Markov chain used in the solution,

9.4. OUTPUT QUEUEING MODEL 105

and the steady state solution of that chain. For a complete list of the files generated by
the method please refer to appendix A.

9.4 Output queueing Model

The main purpose of this section is to show how to calculate measures of interest with the
Measures of Interest module.

9.4.1 Model Description

This model represents an 2×2 output queue ATM switch architecture. In this model, when
a packet arrives at the switch it is immediately routed to the appropriate output channel
and no blocking occurs in the switch fabrics. We have two On Off sources that transmit
packets to the Switch 2x2 object. When the event Packet Generation triggers, a source
sends a packet to the switch that with probability p routes the packet to queue 1 (first out-
put) and with probability 1−p routes it to queue 2 (second output). The On Off Source 1
object sends packets using the port named connection 1 and the On Off Source 2 object
sends packets using the port named connection 2. The model is shown in Figure 9.5.

9.4.2 Solving the Model

After the generation of the Markov chain, we solve for the steady state of the model using
the Analytical Model Solution module. To solve the model, click on the Analytical Model
Solution button. Choose either the Exact or Iterative Methods.

9.4.3 Measures of Interest

For this model we will pay special attention to how to use the Measures of Interest module.
Click on the Measures of Interest module. The interface is shown in Figure 9.6.

For any measure of interest, we must select a file that contains the steady-state or
transient probabilities of the model. This file is generated by the solution method chosen
in the Analytical Model Solution module. In this example, we use the file generated by the
GTH no block Method. We also have to specify the file to store the results that we want
to obtain (calculated measures of interest). The Measures of Interest module has three
different sections:

PMF of one or more state variables - In this section we are able to calculate the
probability mass function of one or more state variables. For this, it is necessary
to choose the variable of interest in the Choose Variables box. If we want to obtain
conditional probabilities, we must select the Conditional box. Then the conditional
pmf of the selected state variables will be calculated. Suppose that we want to obtain

106 CHAPTER 9. EXAMPLES

connection_1

connection_2
queue_2

queue_1

name=Switch_2x2

Watches=

OFF ON

Watches=
 Status

name=On_Off_Source_2

OFF ON

Watches=
 Status

name=On_Off_Source_1

This model represents a 2X2 output queue ATM switch architecture.

In this model, when the packet arrives at the switch it is immediately

routed to the appropriate output channel and no blocking occurs in the

switch fabric. There are two On_Off sources that transmits packets to

the Switch_2x2 object.

Figure 9.5: The Outputqueueing Model

9.4. OUTPUT QUEUEING MODEL 107

Figure 9.6: The Measures of Interest module.

1. PMF of the Switch 2x2.queue 1 - Choose the Switch 2x2.queue 1 variable,
select a name for the measure of interest file and click on the Evaluate button.
To see the result, click on the Plot button, select the file generated, and click
on the GNUPlot button. Figure 9.7 shows the result.

2. PMF of the Switch 2x2.queue 1 conditioned on the state of the On Off Source 1
and of the On Off Source 2 - To calculate the PMF of Switch 2x2.queue 1

conditioned on the On Off Source 1 and the On Off Source 2 being in the ON
state, specify the condition
(On_Off_Source_1 = 1) & (On_Off_Source_2 = 1)

Important: We must use parentheses to specify functions. If parentheses are
not employed carefully, wrong results may be generated.

Function of state variables - Suppose we want to calculate the probability of a function
of two or more state variables. For example, we may be interested in the probability
that a state variable is equal to three times the value of another state variable. To
specify the appropriate function we select the corresponding tabbed pane in Figure
9.6. As another example, suppose that we have two objects in the model with their
respective state variables and we want to obtain the probability that the sum of
these two state variables is less than a specific value. To do this, we must specify the
function (state_variable_1_name) + (state_variable_2_name) < value.
If we select the Conditional option, the conditional probability of this function of the

108 CHAPTER 9. EXAMPLES

P
r
o
b
a
b
i
l
i
t
y

Queue_size

Figure 9.7: The PMF of the Switch 2x2.queue 1 object.

state variables is computed.
Other examples:

• If we want to obtain the probability that the sum of Switch 2x2.queue 1 and
Switch 2x2.queue 2 is equal to 2, we have to specify the following function:
(Switch_2x2.queue_1 + Switch_2x2.queue_2) = 2. We can also calculate
the probability that Switch 2x2.queue 1 equals twice
Switch 2x2.queue 2. This measure is specified by
(Server_Queue_1.queue) = 2*(Server_Queue_2.queue).

• Conditional Behavior of Queues 1 and 2 - Suppose that we want to obtain the
probabilities above, conditioned on the On Off Source 1 being ON. In this case
it is necessary to click on the Conditional option and construct the function
(On_Off_Source_1.status = 1).

Probability of a set - This section is used when we want to obtain the probability of
a set of states. We can also use the Conditional option as in the previous sections.
For example, suppose that we want to obtain the probability that the size of Queue
1 is 2 and the size of Queue 2 is 3, given that Source 2 is ON. To do this we spec-
ify the function (Switch_2x2.queue_1 = 2) & (Switch_2x2.queue_2 = 3). The
condition is (On_Off_Source_1 = 1).

Average Rate Reward - This section is used when we want to obtain the average at

9.5. TRAFFIC MODEL 109

time t or in steady-state. In fact, it is computed as an inner product of the reward
vector and the probability vector.

Average Impulse Reward - This section is used when we want to obtain the average
impulse reward at time t or in steady-state. We consider the probability that the
model is in a state, say si, multiply by the probability that occurs an transition to
a other state, say sj, and multiply by the impulse reward. Then we sum over all
possible combinations.
Note: In “PMF of one or more state variables”, “Function of state variables”, and
“Probability of a set”, we can select more than one state probabilities file. In this
case, the PMF will generate a specific file for each time interval and a file with the
interest measure for all time intervals.

9.5 Traffic Model

9.5.1 Model Description

In this example we model a video source using a birth-death process which feeds a limited
queue. In this model, the source generates packets at a rate that depends on the state of the
birth-death model. This source model results from the superposition of a number of ON-
OFF sources. The video source has two exponential events: Enable Source, that increases
the number of active ON-OFF sources and Disable Source that reduces the number of
active ON OFF sources. The other event (Packet Generation) occurs if the number of
active sources is at least one.

The behavior of the Server Queue object is very simple: the packet is stored in the
queue, if there is space available in the buffer. The service time of the server has exponential
distribution. Figure 9.8 shows the model.

wire_1

/*This model has a birth_death traffic
source where each state represents the number
of active on_off sources. The packets generated
by the source are sent to the Server_Queue object*/

M

name=Server_Queue

Watches=
 Queue

...0 1A 2A MA

name=Birth_Death

Watches=
Active_Sources

Figure 9.8: The Traffic Model.

110 CHAPTER 9. EXAMPLES

9.5.2 Solving the Model

In this example we are interested in the steady state behavior of the system. To solve
the model, click on the Analytical Model Solution button. Choose the Exact or Iterative
Methods. In this case, you can choose any method.

After this step, we are able to calculate the measures of interest. For example the
user can obtain the PMF of the number of active sources, and the probability that the
number of on-off sources is greater than a given value conditioned on the queue being at
its maximum value.

Choose the Measures of Interest module. Then choose the PMF, select the state variable
active sources, and click on Plot to obtain the first measure above.

Now assume that you want to solve this model by simulation. Please refer to chapter
3 and the section on messages and events to learn about the event execution process. The
model above can be immediately simulated. Recall that an enabled event E is not re-
sampled if another event triggers and E remains enabled in the new state. The following
situation occurs in the example above. Assume that only one source is active. Then 2
events of the object source can trigger in this state and 2 samples are in the event list.
Assume that the event corresponding to the disabling of a source triggers. The event
corresponding to enabling a source remains in the event list. However, this event was
generated with rate (active sources−1)×α. When it triggers, the new state will be one
active source and therefore no event with rate active sources×α will ever be generated.
The user should follow the steps in chapter 3 to build a model that generates new samples
of events after an action (even if the events remain enabled), and compare the resulting
models.

9.6 Set Cumulative Rewards Values

Reward models can be easily defined in TANGRAM-II. As described in chapter 2 an
extremely rich set of measures can be defined using rate rewards (which are associated with
states in the model) and/or impulse rewards (which are associated with state transitions).
We recall that we can attribute values to a reward by defining conditions over the state
variables associated to an object. Furthermore, global rewards can be defined, and their
value set when boolean conditions over state variables from different objects are satisfied.
The reward values accumulated can be modified when an action is executed, as we will see
in the example below.

9.6.1 Model Description

The main purpose of this example is to show how the cumulative value of a reward de-
fined for an object can be modified by the execution of an action. The main function to
accomplish this is called set cr . We can also obtain the current value of the amount of

9.6. SET CUMULATIVE REWARDS VALUES 111

reward accumulated using the get cr function. Note: these functions can be used only in
simulation.

The model is shown in Figure 9.9. In that figure, a source sends packets to a finite
exponential queue. The behavior of the source is described in Figure 9.10. While in state
where the variable state is equal to zero, the source generates packets at an exponential
rate. From Figure 9.10, the state variable status can only change its value when the
elapsed time since the last change is at least 10. This elapsed time is stored in the reward
elapsed time.

/* This model shows how to test and set the

rewards, using get_cr() and set_cr() */

wire
M

name=Server_Queue

Watches=
 Queue

P

name=Packet_Source

Watches=
 Status

Figure 9.9: Set Cumulative Rewards Values.

The description of the Server Queue object is shown in Figure 9.11.
Note: get cr gets the total value of the corresponding rate reward accumulated so

far, and set cr sets the cumulative rate reward value. We can use get ir to get the
total value of the corresponding impulse reward accumulated so far and set ir to set the
impulse reward cumulative value. Again, these functions can be used only in simulation.

Debugging tip: If you need some information about the value of any variable during
simulation you can use set cr to generate a trace containing the values.

Imagine you want to know the values assumed by the queue during simulation. Suppose
this state var is called QUEUE. How to do it step by step:

1. Specify a reward like this:

rate_reward = NAME_RELATED

condition=(FALSE)

value=0;

This reward will not accumulate by itself. Instead, you need to specify its value with
the set cr command.

112 CHAPTER 9. EXAMPLES

P

Declaration=
 Var
 State: status;

 Const
 Float: pac_rate,reward_rate;
 Port: port_out;

name=Packet_Source

Events=

 event= Packet_Generation(EXP, pac_rate)
 condition= (status == 0)
 action= {
 msg(port_out, all, 0);
 };

 event= Set_Reward(EXP, reward_rate)
 condition = (TRUE)
 action = {
 int s;
 if (get_cr(elapse_time) > 10)
 {
 set_cr(elapse_time, 0);
 if (status == 0)
 s = 1;
 else
 s = 0;
 }
 set_st("status", s);
 };

Messages=

Rewards=
 rate_reward=elapse_time
 condition= (TRUE)
 value= 1;

Initialization=
 status=0
 pac_rate=0.80
 reward_rate= 1
 port_out=wire

Watches=
 status=0

Figure 9.10: The Packet Source object (Set Cumulative Rewards Values).

9.6. SET CUMULATIVE REWARDS VALUES 113

M

Declaration=
 Var
 State: queue;

 Const
 Float: service_rate;
 Integer: queue_size;
 Port: port_in;

name=Server_Queue

Events=
 event=Service (EXP, service_rate)
 condition= (queue > 0)
 action= { int q;
 q = queue - 1;
 set_st("queue", q);
 };

Messages=
 msg_rec=port_in
 action= { int q;
 q = queue;
 if (queue < queue_size)
 q = queue + 1;
 set_st("queue", q);
 };

Rewards=

 rate_reward= utilization
 condition= (queue > 0)
 value= 1;

Initialization=
 queue = 0
 service_rate = 1.0
 queue_size = 100
 port_in=wire

Watches=
 queue=100

Figure 9.11: The Server Queue object(Set Cumulative Rewards Values).

2. Inside the code (message or event of the same object) you put the following com-
mand: set cr(NAME RELATED, QUEUE). This command will modify the cr value of
the reward called NAME RELATED to QUEUE value and will plot the new value in a trace
file under condition 3.

3. To generate the trace file you need to press the trace button at the Reward Option
(button) in the Simulation window. You can visualize the values as text in any editor
or plot it with Gnuplot.

In order to make the debug action and the analysis of the simulation time easier the
following commands can be used:

1. get simul time(). This command is used to get the current simulation time (float).
Examples:

(1) var_float = get_simul_time();

(2) if (get_simul_time () > var_time)

{

do_something;

}

2. printf. This command is similar to the print command found in the C language.
Example:

114 CHAPTER 9. EXAMPLES

printf ("Debug message1: %d %f \n", int_var, float_var);

3. fprintf. This the same as the fprintf found in the C language. Example:

fprintf (stderr, "Debug message2: %d %f \n", int_var, float_var);

fprintf (stdout, "Debug message3: %d %f \n", int_var, float_var);

9.7 Event Cloning

Event cloning is useful when more than one sample of an event has to be generated when
an action is executed. Models that contain queues with multiple servers benefit from this
construct.

9.7.1 Model Description

In this example, we have two objects: a Poisson Source and an Infinite Server Queue. The
service event has a uniform distribution . Each message sent by the source and received
by the Infinite Server (indicating the arrival of a new packet), generates a new sample of
the event Service. Figure 9.12 presents the model and Figures 9.13 and 9.14 show all the
attributes of each object.

/*This model represents an On_Off_Source with Infinite Server,
using event cloning.*/

OFF ON

Watches=
 Status

name=On_Off_Source
U

U

U
:
:

Watches=
 Number_Being_Served

name=Infinite_Server

wire

Figure 9.12: Event Cloning Model.

Important It is important to understand how samples of an event are generated when
we clone an event. Let us recall how samples are automatically generated by the simulator,
when no cloning is used in the model. A new sample is generated whenever: (a) an event is
enabled (from a disabled condition) and (b) whenever an event executes, provided that the
conditions for the event to occur remain satisfied. Note that only one sample is active at
a time. When the clone ev() executes in an action, the following rule is used to generate
a sample :

A new sample is generated after clone ev() is issued when the current object
state is such that the event that will be cloned is enabled and it remains enabled
after the action is executed.

9.7. EVENT CLONING 115

OFF ON

Watches=
 Status

Initialization=
 /* State Variable initialization */
 Status = 0

 /* Constants initialization */
 ONOFF_RATE = 1
 OFFON_RATE = 4
 TRANSMISSION_RATE = 1.5
 PORT_OUT = wire

Rewards=

Messages=

Events=
 event= On_Off (EXP, ONOFF_RATE)
 condition= (Status == 1)
 action= { ;set_st("Status",0); };

 event= Off_On (EXP, OFFON_RATE)
 condition= (Status == 0)
 action= { ;set_st("Status", 1); };

 event=Packet_Generation (EXP,TRANSMISSION_RATE)
 condition=(Status == 1)
 action= {msg(PORT_OUT,all,0);};

name=On_Off_Source Declaration=
 Const
 Float: ONOFF_RATE, OFFON_RATE,
 TRANSMISSION_RATE;
 Port: PORT_OUT;

 Var
 State: Status /* 1 - ON; 0 - OFF */;

Figure 9.13: The ON OFF Source object (Event Cloning Model).

U

U

U
:
:

Watches=
 Number_Being_Served

Initialization=
 /*Constants Initialization*/
 SERVICE_TIME = 3
 PORT_IN = wire

 /*State Var Initializatioin*/
 Number_Being_Served = 0

Rewards=
rate_reward=utilization
condition=(Number_Being_Served>0)
value=1;

Messages=
msg_rec = PORT_IN
action= {
 int number;
 number = Number_Being_Served + 1;
 clone_ev("Service");
 set_st("Number_Being_Served",number);
 };

Events=
 event= Service (UNI, 0, SERVICE_TIME)
 condition= (Number_Being_Served > 0)
 action= {
 int number;
 number = Number_Being_Served - 1;
 set_st("Number_Being_Served",number);
 };

name=Infinite_Server

Declaration=
 Var
 State: Number_Being_Served;

 Const
 Float: SERVICE_TIME;
 Port: PORT_IN;

Figure 9.14: The Infinite Server object (Event Cloning Model).

116 CHAPTER 9. EXAMPLES

One can generate as many samples as specified during the execution of an action.

When cloning is used the simulator only generates automatically a new sample when
condition (a) above is true or condition (b) and this is the last sample to execute.

It is also important to note that when the conditions for an event to occur become
false, all its samples in the simulator event queue are immediately discarded.

Consider the infinite queue example in this section. When a message is received by ob-
ject Infinite Server and the Infinite Server queue is empty, a sample of the Service

event is generated and the event becomes enabled. Note that no other sample of Service
is generated, since the clone ev() command has no effect when the action is executed.
This is because the event Service is not enabled when the message is received.

Assume now that the Infinite Server queue has more than one packet queued, and
more than one samples in the event queue. When any of the generated samples triggers,
the corresponding action is executed but no other sample is automatically generated, since
there are other samples in the simulator event queue. The last sample that triggers resets
the state variable serving and the conditions for Service to occur become false. See also
the MDk1 example.

9.8 Multiple action

Several actions may be associated with an event or a message, each having a different
probability of occurrence. Of course, the probabilities must add to 1. qThe probabilities
are specified using the reserved word prob followed by an arithmetic expression.

Example: Assume we want to model a faulty link which corrupts a packet with prob-
ability 1 − p. Upon arrival the packet is accepted and queued with probability p and
discarded with probability 1 − p.

action= {

/* a packet with no errors has arrived */

int queue;

queue = Queue + 1;

set_st("Queue", queue);

} : prob = p;

{

/* a corrupted packet has arrived, do nothing */

;

} : prob = 1 - p;

9.8.1 Model Description

To illustrate multiple action constructs, we choose the model of Figure 9.15. In this model
an arriving packet is directed to one of the four service centers. The service center is chosen

9.8. MULTIPLE ACTION 117

as follows: first, two out of the four queues are randomly chosen. Then the service center
which has the smallest queue (from the two chosen) is selected.

In this model there are three types of objects:

1. Poisson Source - this object generates and sends packets to the split object.

2. Split - this object randomly selects two out of the four queues and sends a message
to them informing that there is a new packet to be served. Note also that we tagged
one of the two chosen queues with the same probability. This is used in case the
queues have identical sizes.

3. Queues - There are four queues that store and serve the packets. The service centers
that receive a message from the split node also exchange control messages to deter-
mine which one has the smallest queue. Note that the “data” sent by the split node
indicates the center that must start the comparison process.

communication

name=Queue1

Watches=
 Queue=5
 Chosen=0

name=Queue2

Watches=
 Queue=4
 Chosen=0

name=Queue3

Watches=
 Queue=5
 Chosen=0

name=Queue4

Watches=
 Queue=5
 Chosen=0

P

name=PS_1

Watches=

source
P

name=Split

Watches=

/* This model represents a source which feeds a split object. The split
object randomly select two out of four queues to serve the packet. The
queue with the smallest number of waiting packets will serve the packet.
(The two selected queues exchange messages to decide which one will serve it.) */

Figure 9.15: The Multiple Action Model.

The description of the objects is shown in Figures 9.16, 9.17 and 9.18.

118 CHAPTER 9. EXAMPLES

P

Declaration=
 Const
 Integer : data;
 Float: rate;
 Port: port_out;

name=PS_1

Events=
 event= Generate_pkt(EXP, rate)
 condition= (TRUE)
 action= {
 msg(port_out, all, data);
 };

Messages=

Rewards=

Initialization=
 data = 0
 rate = 10
 port_out= source

Watches=

Figure 9.16: The Poisson Source object (Multiple Action Model).

9.9 Model with Symbolic Parameters

As mentioned previously, the tool supports the use of symbolic parameters. Symbolic
parameters can be used in expressions that specify a distribution, expressions that specify
the probabilities of an action, and expressions that define the value of a reward. For
example, the rate of an exponential distribution (EXP) can be specified using an expression
that contains a parameter. In the same way, the probability of an action can be specified
using an expression that contains a parameter. Also, when specifying rate or s, the value
of the reward can be specified using an expression that includes a parameter. Symbolic
parameters cannot be used in conditions or inside actions.

Parameters are useful for sensitivity analysis . Suppose that we want to study the
influence of different event rate values. Then, if we define the rate of events as a parameter,
the chain will be generated only once. The transition probabilities of the chain are defined
as functions of the parameters. The user can choose a value for these parameters and the
transition probability of the chain is easily calculated by the tool without recomputing
the Markov chain. Parameters are set in the interface of the Analytical Model Solution.
In the proper option of the interface, the user can define the numerical values for the
parameters and generate the chain. The rewards are also calculated after the specification
of the parameters. It is necessary to specify all parameters before solving the model.

If simulation is used, no symbolic parameters can be specified. When simulating a
model, the state space is not generated and the simulator calculates the samples for the
events and the probabilities of the action based on the numerical values given.
Important: A model with parameters can not be simulated!

9.9. MODEL WITH SYMBOLIC PARAMETERS 119

P

Declaration=
 Const
 Object: OBJECT1, OBJECT2, OBJECT3, OBJECT4;
 Float : PROB;
 Port : PORT_IN, PORT_OUT;

name=Split

Events=

Messages=
msg_rec= PORT_IN
action= {
 msg(PORT_OUT,OBJECT1,1);
 msg(PORT_OUT,OBJECT2,0);
 }: prob = PROB/2;
 {
 msg(PORT_OUT,OBJECT1,0);
 msg(PORT_OUT,OBJECT2,1);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT1,1);
 msg(PORT_OUT,OBJECT3,0);
 }: prob = PROB/2;
 {
 msg(PORT_OUT,OBJECT1,0);
 msg(PORT_OUT,OBJECT3,1);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT1,1);
 msg(PORT_OUT,OBJECT4,0);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT1,0);
 msg(PORT_OUT,OBJECT4,1);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT2,1);
 msg(PORT_OUT,OBJECT3,0);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT2,0);
 msg(PORT_OUT,OBJECT3,1);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT2,1);
 msg(PORT_OUT,OBJECT4,0);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT2,0);
 msg(PORT_OUT,OBJECT4,1);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT3,1);
 msg(PORT_OUT,OBJECT4,0);
 }: prob = PROB/2;

 {
 msg(PORT_OUT,OBJECT3,0);
 msg(PORT_OUT,OBJECT4,1);
 }: prob = PROB/2;

Rewards=

Initialization=
 PORT_IN = source
 PORT_OUT = receive
 OBJECT1 = Queue1
 OBJECT2 = Queue2
 OBJECT3 = Queue3
 OBJECT4 = Queue4
 PROB = 0.1666667

Watches=

Figure 9.17: The Split object (Multiple Action Model).

120 CHAPTER 9. EXAMPLES

Declaration=
 Const
 Integer: MAX_Q_SIZE;
 Float : TX_RATE;
 Port : PORT_IN, CBUS;

 Var
 Integer : Queue, Chosen;

name=Queue1

Events=
 event= transmit(EXP, TX_RATE)
 condition= (Queue > 0)
 action = {
 int queue;
 queue = Queue;
 queue--;
 set_st("Queue", queue);
 };

Messages=
msg_rec= PORT_IN
action= {
 int queue;
 queue = Queue;
 /* this q was one of the two randomly chosen */
 if (msg_data == 1) {
 /* this q is tagged to start the comparison process */
 msg(CBUS, all, queue);
 };
 set_st("Chosen",1);
 };

msg_rec= CBUS
action= {
 int queue;
 queue = Queue;
 if (Chosen == 1) {
 if ((msg_data >= 0) && (msg_data < queue)) {
 /* this is not the smallest of the 2 queues */
 msg(CBUS, all, -1);
 };
 if ((msg_data >= 0) && (msg_data >= queue)) {
 /* this is the smallest of the 2 q’s, or has identical queue size as another */
 if (queue < MAX_Q_SIZE) {
 queue++;
 };
 msg(CBUS, all, -2);
 };
 if (msg_data == -1) {
 /* this is the smallest of the first chosen q */
 if (queue < MAX_Q_SIZE) {
 queue++;
 };
 };
 };

 set_st("Chosen", 0);
 set_st("Queue", queue);
 };

Rewards=

Initialization=
 Queue = 0
 Chosen = 0
 TX_RATE = 1
 MAX_Q_SIZE = 20
 PORT_IN = receive
 CBUS = communication

Watches=
 Queue=5
 Chosen=0

Figure 9.18: The Queue object (Multiple Action Model).

9.9. MODEL WITH SYMBOLIC PARAMETERS 121

9.9.1 Model Description

We use the M/M/1/k model to exemplify the use of symbolic parameters. We only change
the declaration of the exponential rates. For the two exponential events, we declare in the
Declaration attribute

Object: Poisson_Source

Declaration=

Const

Port: PORT_OUT;

Param

Float: pkt_rate;

Object:Server_Queue

Declaration=

Const

Integer: QUEUE_SIZE;

Port: PORT_IN;

Var

integer: Queue;

Param

Float:service_rate;

We must modify the Initialization attribute of the objects, removing the pkc rate and
service rate initialization. Figure 9.19 shows the model.

/* This model represents a M/M/1/k system. It has two parameters:

one to represent the interval of messages generated by the

Poisson source and the other to represent service time. */

wire

M

Watches=
Queue

name=Server_Queue

P

Watches=

name=Poisson_Source

Figure 9.19: The MM1k Model with Symbolic Parameters.

9.9.2 Solving the Model

The main difference between the solution of the model with symbolic parameters is that it
is necessary to give the values of all symbolic parameters before solving the model. Figure

122 CHAPTER 9. EXAMPLES

9.20 shows the interface for setting the parameter values.

Figure 9.20: The Symbolic Parameters Window.

We can then solve the model using any analytical solution method.

9.10 Gated Queuing Vacation Model

9.10.1 Model Description

This model describes a system with a Poisson source that generates packets to a queue that
serves them if and only if it has a token (generated by the Token Passer object). When the
queue receives the token, it closes a “gate” and serves the packets until a timeout expires.
Note that the queue continues receiving packets, but they are stored behind the gate. If
packets stored after the gate is closed are not served, they must wait until the next arrival
of the token; see Figure 9.21.

The description of the objects is shown in Figures 9.22 and 9.23.

9.10.2 Solving the Model

To solve the model, click on the Simulation Module. For this model, we will use batch simulation.
The Stop Condition can be the G Queue.Service (Event Stop Condition), for instance,
with 140 triggers or Time 1200. In this case, the simulation will finish when one of the
conditions is true.

An interactive simulation can also be performed. Using interactive simulation we are
able to observe the simulation step by step, and to follow the evolution of the model states.

9.10. GATED QUEUING VACATION MODEL 123

/*This model describes a system with a Poisson source
that generates packets to a queue. The queue serves the packets if and
only if it has the token (generate by the Token_Passer object). When the
queue receives the token, it closes the "gate" and serves the packets until
the timeout expires (the queue continues receiving packets, but they are
stored behind the gate). If some packets are not served, they must wait the
next token arrival.*/

pac_wire

tok_wire

P

name=Poisson_Source

Watches=

E

name=G_Queue

Watches=
 Queue
 Gate
 Token

T

Watches=
 Token

name=Token_Passer

Figure 9.21: The Gated Queueing Vacation Model.

E

Declaration=
 State Var
 Integer: Gate, Queue, Token;
 Const
 Integer: MAX_QUEUE;
 Float: SERV_RATE, TIMEOUT_RATE;
 Port: PAC_PORT, TOK_PORT;

name=G_Queue

Events=
 event= service(EXP, SERV_RATE)
 condition= ((Gate > 0) && (Token == 1))
 action= {
 int queue, gate;
 queue = Queue;
 gate = Gate;
 queue--;
 gate--;
 set_st("Queue", queue);
 set_st("Gate", gate);
 };

 event= timeout(EXP, TIMEOUT_RATE)
 condition= (Token == 1)
 action= {
 msg(TOK_PORT, all, 0);
 set_st("Token", 0);
 set_st("Gate", 0);
 };

Messages=
 msg_rec=PAC_PORT
 action= {
 int queue;
 queue = Queue;
 if (queue < MAX_QUEUE)
 queue++;
 set_st("Queue", queue);
 };

 msg_rec= TOK_PORT
 action= {
 int queue;
 queue = Queue;
 set_st("Gate",queue);
 set_st("Token", 1);
 };

Rewards=
 rate_reward= idle
 condition= ((Token == 1) &&
 (Gate == 0) &&
 (Queue > 0))
 value= 1.0;

 impulse_reward= residual_size
 event = timeout, 1
 value = Gate;

 impulse_reward= timeouts
 event = timeout, 1
 value = 1;

Initialization=
 Queue = 0
 Gate = 0
 Token = 0
 MAX_QUEUE = 100
 SERV_RATE = 10
 TIMEOUT_RATE = 1
 TOK_PORT = tok_wire
 PAC_PORT = pac_wire

Watches=
 Queue
 Gate
 Token

Figure 9.22: The Gated Queue object (Gated Queueing Vacation Model).

124 CHAPTER 9. EXAMPLES

T

Watches=
 Token

Initialization=
 Token = 1
 TIMEOUT_RATE = 1
 TOK_PORT = tok_wire

Rewards=

Messages=
msg_rec= TOK_PORT
 action = {
 ;
 set_st("Token", 1);
 };

Events=
 event = timeout(EXP, TIMEOUT_RATE)
 condition = (Token == 1)
 action = {
 msg (TOK_PORT, all, 0);
 set_st("Token", 0);
 };

name=Token_Passer

Declaration=
 State Var
 Integer: Token;
 Const
 Float : TIMEOUT_RATE;
 Port : TOK_PORT;

Figure 9.23: The Token Parser object (Gated Queueing Vacation Model).

To use the Interactive Simulation, choose the Interactive tabbed pane. Set, for example,
Number of transitions to 10. So the state variables of the model can be visualized (on
the TGIF screen) every 10 model transitions.

In order to visualize the state variables, the user should include in the Watches attribute
the name of the state variables that he/she wishes to observe. If no state variables are
included in the Watches attribute for an object, the simulator does not display any state
variables for that object.

Notes

1. There is a limitation on the total number of variables displayed during an interactive
simulation. In this version, the total number of variables that can be observed at
once is 200.

2. The user can change the variable that is been displayed at any time during the
interactive simulation.

3. The Watches= attribute must exist if an interactive simulation is performed, even if
no variable is associated with it.

4. The state variables are re-written on the TGIF canvas at each interactive simulation
step. The color and font size and style used during state variable re-writing is that
currently set in TGIF. However, they can be changed after a step is executed.

5. The interactive simulation stops after the execution of an event. If simultaneous
events occur, the simulation stops after each one is executed. The user should observe
the simulation clock (top left corner of canvas) to see the model evolution with time.

9.11. VECTOR VARIABLE MODEL 125

9.11 Vector Variable Model

Not only integer-valued state variables can be used in TANGRAM-II. This example shows
how we can use a vector variable. The vector variable is used as a state variable and
the behavior is identical to the C language. When a vector variable is used we must pay
attention to the following:

1. The first index of the vector is zero (If we declare a vector with five elements, the
indices of these elements are (0,1,2,3,4)).

2. An integer variable, for example i, has to be used as an index of the vector state
variable (N [i] = . . .)

3. We can initialize the vector state variable as follows :

(a) N[] = 1 (all positions of the vector are equal to 1).

(b) N = [1,2,3,4,5] (each position receives a specific value).

4. Note that all entries must be initialized.

5. When we want to copy a state var vector to a auxiliary variable, we must use the
get st function. The syntax is: get st(auxiliary var,state var) .

6. We can specify the dimension of the vector variable using a Integer constant type.
In this case, we must specify the Const part before the Var part in the Declaration
attribute of the object. In the Initialization attribute, we must specify the dimension
of the vector before the initialization of the vector variable. If we initialize each
position with a specific value, it is not necessary to follow this order. See figure 9.26
for more details.

7. To generate the mathematical model, we must specify the maximum value of the
variables (in State Space Generation Module). In the case of the vector variable, this
parameter is the maximum value considering the value in each vector’s position.

8. During the simulation, we are able to see the evolution of the state vector variable.
For example, if we have a vector with 100 positions and we want to see all positions
between 0 and 10, we have to do specify in the Watches attribute
name vector variable[0:10]. If we want to see another interval, we have to do the
same:
name vector variable[20:50].

126 CHAPTER 9. EXAMPLES

9.11.1 Model Description

This model is very simple: there are two Poisson sources that send packets to a FIFO
queue. The queue has a limited buffer with size equal to 10. We use a vector state variable
with 10 positions to represent the buffer of the queue. Each position of the buffer stores the
id of the source which generates the packet. When the service event triggers, the packet
in the first position of the queue is served and all other packets are shifted. The model is
shown in Figure 9.24.

source_queue

source_queue

M

name=Queue

Watches=
Queue

P

Watches=

name=PS_2

P

Watches=

name=PS_1

/* This model has two Poisson sources that send packets to a FIFO queue.

The queue has a limited buffer with size equal to 10.

We use a vector state variable with 10 positions to represent the buffer

of the queue. */

Figure 9.24: The Vector Variable Model.

It is important to note that with this kind of feature we are able to implement a service
discipline which is a function of the type of packet in the queue.

The description of the objects is shown in Figures 9.25 and 9.26

9.12 Simulation Model with Animation

TANGRAM-II supports animation using TGIF commands and the animation attribute.

9.12. SIMULATION MODEL WITH ANIMATION 127

P

Watches=

Initialization=
 data = 1
 rate = 1
 port_out = source_queue

Rewards=

Messages=

Events=

 event= Geracao_Pacote(EXP, rate)
 condition= (TRUE)
 action= {
 msg(port_out, all, data);
 };

name=PS_1 Declaration=
 Const
 Integer : data;
 Float: rate;
 Port: port_out;

Figure 9.25: The Poisson Source object (Vector Variable Model).

M

Declaration=
 Var
 State : queue[10], size;
 Const
 Integer : max_size;
 Port : port_in;
 Float: serv_rate;

name=Queue

Events=
 event= service (EXP, serv_rate)
 condition= (size > 0)
 action= {
 int q[max_size];
 int i, s;

 i = 1;
 while (i < max_size) {
 q[i-1] = queue[i];
 i = i + 1;
 }
 q[max_size - 1] = 0;
 s = size - 1;

 set_st ("queue[]", q);
 set_st ("size", s);
 };

Messages=
 msg_rec= port_in
 action= {
 int q[max_size], s;
 s = size;

 /*copy state var queue[] to aux var q[]*/
 get_st(q,"queue[]");

 if (size < max_size) {
 q[size] = msg_data;
 s = size + 1;
 }

 set_st ("queue[]", q);
 set_st ("size", s);
 };

Rewards=

Initialization=
 queue = [1, 1, 1, 1, 1,
 2, 2, 2, 2, 2]
 size = 10
 max_size = 10
 serv_rate = 2
 port_in= source_queue

Watches=

Figure 9.26: The Queue object (Vector Variable Model).

128 CHAPTER 9. EXAMPLES

9.12.1 Model Description

We will now show an example of an animation done with the M/M/1/k model. This
animation consists of two parts. The packet being sent from the source to the queue, and
the increase/decrease of the queue size. The animation of the queue size is done by an
rectangle object named “ BAR ”. This object stretches its size to the appropriate value of
its variable q. The object Exp Server has the following Animation attribute:

Animation=

get_line_in_attr(result1, Watches, 1);

tokenize(result2, $(result1), "=");

get_line_in_attr(q, result2, 2);

assign(_BAR_.n, $(q));

if("$(__SIMULATION_STEP__.Ani_T_Steps)"==

"$(__SIMULATION_STEP__.Ani_C_Step)",

BAR.animate, NULL);

This code gets the current value of the queue state variable and sets the variable n in object
BAR to this value. If it is the last step in the animation loop then it calls the function
BAR .animate which animates the object BAR . This object has an animation function

“animate” that is called by the object Exp Server, that checks the size of the variable n
and executes the corresponding function that resizes the BAR. This is done only at the
last animation step.

To animate the movement of the packet from the source to the queue it is necessary to
modify the behavior of the object Packet Source. The animation can depend only on an
object’s state variables changes. In order for the animation to occur only when a packet is
transmitted, a state variable change must occur. We modify the dummy state variable S
to switch between states 0 and 1. Every time a packet is transmitted the state changes. By
doing this, the Animation attribute can decide when to play the animation of the packet
movement.

Animation=

get_line_in_attr(result1, Watches, 1);

tokenize(result2, $(result1), "=");

get_line_in_attr(s, result2, 2);

if("$(s)"!="$(s_ant)", _PAC_.animate, NULL);

if("$(__SIMULATION_STEP__.Ani_T_Steps)" ==

"$(__SIMULATION_STEP__.Ani_C_Step)", Reset_S, NULL);

Reset_S=

assign(s_ant, $(s));

This code checks to see if the state variable S has changed its value. If so, then it calls the
animation function in object PAC for every animation step.

9.13. AN AVAILABILITY MODEL 129

At the last animation step, it stores the new value for the state variable S. The
object PAC , illustrated in Figure 9.27, has the animate function which moves the object
horizontally to the left. At the first step, this object records its position. For every step
it uses the number of the animation step to calculate the new x coordinate and shift the
object to the left. At the last step of the animation it restores its original position.

M

name=Server_Queue

Watches=
 Queue

P

name=Packet_Source

Watches=
 S

/*This model represents a M/M/1/K queue with animation.*/

Figure 9.27: The Simulation Model with Animation.

Many other complex animations can be specified. The user can basically define any
possible graphic command supported by TGIF. Sometimes the user will need to modify
the behavior of the object in order to get the desired animation.

9.13 An Availability Model

9.13.1 Model Description

Consider a fault-tolerant database system which has a front end, a database, and two
processing subsystems. Each processing subsystem contains a switch, a memory, and two
processors. A processing subsystem is considered operational if the memory, the switch,
and one of the two processors are operational. The entire system is operational if the
database, the front-end, and at least one of the two processing subsystem is operational.
We further assume that when a processor fails it contaminates (or fails) the database with
probability (1-PROB), where PROB is the coverage probability. This model implements a
simple repair policy . The database model presented in the next section model models a
more complex repair policy.

There are four objects in the model:

Database Object This object has one state variable that represents if the object is
operational or is not. There are two events: a FAIL event with rate equal to FAIL-
URE RATE, and a REPAIR event, that repairs the object with rate equal to RE-
PAIR RATE. In the Messages attribute, the messages received are sent by the two
subsystems (when they fail, with probability PROB, they contaminate the database
object). In the Rewards attribute, a reward (named database availability) is speci-
fied. It computes the fraction of time that the database is operational.

Front End Object This object has the same behavior of the Database Object.

130 CHAPTER 9. EXAMPLES

Subsystem Processor Objects Each Subsystem Processor Object has three state vari-
ables:
Operational Procs (that represents the total number of operational processors in
the subsystem), Operational Switch (that represents if the switch is operational or
not) and Operational Memory (if the memory is operational or not).

The Events attribute has events that represents the failure of the memory, of the
switch and of the processors and events that repair them. When the processor fail,
it contaminates a database model with probability 1-PROB.

The Rewards attribute has a reward that computes the fraction of time that the
subsystem processor is operational.

The availability of the model is specified by a Global Reward (system-availability).
This attribute has the same syntax as the Reward attribute.

Important: The conditions can be evaluated based only on the rewards of the objects.
The value assigned to a global reward can be a constant, or a reward defined for an object
of the model. If, for example, the object has a state variable S, we cannot specify the
condition
(condition= (object.S == 1)). But if the object has a reward named reward R, we can
specify the condition (condition = (object.reward_R == 1)). In the case of the value
assigned, we can specify, for example,
value = object.reward_R_1 + object.reward_R_2.

The model is shown in Figure 9.28.

The System 1 object is shown in Figure 9.29.

9.14 A Database Model

9.14.1 Model Description

The following example illustrates the modeling of complex failure and repair interactions
among the various components of the system. The system consists of three types of com-
ponents: two processors, a front end, and a database. The failure mode is used to model
the fact that a processor can fail in two different modes: mode A with probability PROB
and mode B with probability 1-PROB. The repair rates are different in each of the modes.
Failures of a processor may affect the system in different ways. In the failure mode A no
component is affected. In the failure mode B the database is affected. Using the usual
concept of coverage, with probability COVERAGE the database is successfully recovered
and no manual repair is needed. The recovery is assumed to be instantaneous (instanta-
neous coverage). With probability 1-COVERAGE the database is corrupted and a repair
is necessary. The database may also fail spontaneously. In order to repair the database at
least one processor must be operational.

9.14. A DATABASE MODEL 131

global_rewards=
rate_reward=system_availability
condition=((Database.database_availability ==1)&&
 (Front_End.front_end_availability == 1)&&
 ((System_1.system_1_availability == 1)||
 (System_2.system_2_availability == 1)))
value = 1;

/*This model represents a system, with a
Database, a Front_End and two processing subsystems.
Each one of the components can fail. We obtain the availability
of the system */

fail_database

P

 Memory

S
w
i
t
c
h

P

Watches=
Operational_Procs
Operational_Switch
Operational_Memory

name=System_1

DATA
BASE

Watches=
Operational

name=Database

Watches=
Operational

name=Front_End

P

 Memory

S
w
i
t
c
h

P

Watches=
Operational_Procs
Operational_Switch
Operational_Memory

name=System_2

Figure 9.28: The Availability Model.

132 CHAPTER 9. EXAMPLES

P

 Memory

S
w
i
t
c
h

P

Watches=
Operational_Procs
Operational_Switch
Operational_Memory

Initialization=
Operational_Procs = 2
Operational_Switch = 1
Operational_Memory = 1
N_PROCS = 2
FAILURE_RATE = 0.0004
REPAIR_RATE = 1
PROC_FAILURE_RATE = 0.008
PROC_REPAIR_RATE = 1
PROB = 0.8
DATABASE = fail_database

Rewards=

rate_reward = system_1_availability
condition = ((Operational_Memory ==1)
 &&(Operational_Switch==1)&&
 (Operational_Procs >0))
value = 1;

Messages=

Events=
/*events related with Processor 1*/
event = Fail_Processor(EXP,Operational_Procs*PROC_FAILURE_RATE)
condition = (Operational_Procs > 0)
action={
 int operational_procs;
	 operational_procs = Operational_Procs - 1;
 msg(DATABASE,all,0);
 set_st("Operational_Procs",operational_procs);

	}: prob=1-PROB;

 {
 int operational_procs;
	 operational_procs = Operational_Procs - 1;
 set_st("Operational_Procs",operational_procs);

 }: prob=PROB;

event = Repair_Processor(EXP,(N_PROCS - Operational_Procs) *
PROC_REPAIR_RATE)
condition = (Operational_Procs <= 1)
action={
 int operational_procs;
 operational_procs = Operational_Procs + 1;
 set_st("Operational_Procs",operational_procs);

 };

/*events related with memory*/
event = Fail_Memory(EXP,FAILURE_RATE)
condition = (Operational_Memory == 1)
action={
 ;set_st("Operational_Memory",0);
 };

event = Repair_Memory(EXP,REPAIR_RATE)
condition = (Operational_Memory == 0)
action={
 ;set_st("Operational_Memory",1);
 };

/*events related with switch*/
event = Fail_Switch(EXP,FAILURE_RATE)
condition = (Operational_Switch == 1)
action={
 ;set_st("Operational_Switch",0);
 };

event = Repair_Switch(EXP,REPAIR_RATE)
condition = (Operational_Switch == 0)
action={
 ;set_st("Operational_Switch",1);
 };

name=System_1 Declaration=
State Var

Integer:Operational_Procs, /* Total number of operational processors */
 Operational_Switch,/* 0 if switch is not operational; 1 if switch
is operational */ Operational_Memory;/* 0 if memory is not operational; 1
if memory is operational */

Const

Integer: N_PROCS /* Total number of processors in the system*/;

Float: FAILURE_RATE,REPAIR_RATE, /* Both of switch and memory have
the same failure and repair rates */
 PROC_FAILURE_RATE, PROC_REPAIR_RATE, PROB;

Port: DATABASE /* This port sends a message that causes the fail in
database */;

Figure 9.29: The System 1 object (Availability Model).

9.14. A DATABASE MODEL 133

The system is considered operational when at least one of each type of component is
operational. No component can fail once the system is down. Finally, there is a single
repair center and the highest repair priority is assigned to the front end followed by the
database and then by the processors.

To model this database system, we use four objects:

Database Object This object has two state variables: Failed, which represents if the
database is failed, and Can Fail, used to enable the Fail event (remember that when
the system is down, the objects cannot fail).

The single event is Fail. When this event triggers, the database sends a message to the
repair center, through the FAILURE REPAIR port (named failure repair port).
This port is used by all objects to send a message when they fail.

The message received through the affected port (named affected port) is sent by
the processor object (in this case the processor failure mode is B). The message
received through the FAILURE REPAIR port (named failure repair port) is sent
by the repair center to indicate that an object was repaired. The message received
through the status port (named sys status port) is sent by the repair center when
the system is down (in this case, the event FAIL becomes disabled) and when the
system is up (in this case, the event FAIL becomes enabled).

Front End Object The front end object has the same behavior as the Database object.
The only difference is that the front end object is not affected when the processor
fails.

Processor object This object has three state variables: Proc1 Fail, which represents
the number of processors that have failed in mode A, Proc2 Fail, which represents
the number of processors that have failed in mode B, and the variable Can Fail,
similar to that of the database object.

The single event is Fail, that represents a failure of the processor object. With
probability PROB, the failure is of type A, and with probability 1-PROB it is of type
B.

The messages received from the repair center are similar for all objects. The only
difference is that in the case of the processor object, the message data field is checked
to verify the type of failure that was repaired.

Repair Center This object represents a repair center in the database model. It controls
the repair priorities and determines when the system is operational or not.

The only state variable is a vector variable, that stores in each position the status of
each component. The first position is reserved to the object with the highest repair
priority (in this case, the front end object). The second position is reserved to the

134 CHAPTER 9. EXAMPLES

object with has second priority level (the database object) and the third and fourth
positions, are reserved to the processors (each position corresponding to a different
failure mode).

The events in the repair center object correspond to a repair performed in a sys-
tem component. When the repair center repairs an object, it sends a message
to the respective object (FRONT END, DATABASE, PROCESSOR) through the
failure repair port. The message that represents the system status is sent if and
only if the specified condition is true (i.e. when the system is operational or not).

In the Messages attribute, the repair object receives th e messages sent by the other
objects in the database model. When the message arrives, the repair object checks
who sends the message (through the function objcmp(msg source,object)). This
is a boolean function that compares two objects. The word msg source checks the
object that sends the message. Then the vector variable, which indicates the failed
objects, can be updated. If the database or the front end fails, a message is sent to
all objects and the system becomes down. If the number of processors failed is equal
to 2, the same message is sent to all objects in the model.

The model is shown in Figure 9.30.

The Processor object and the Repair object are shown in Figures 9.31, 9.32 and 9.33.

9.15 Go Back N Protocol Model

9.15.1 Model Description

The go-back-N protocol is used for reliable data transfer. Please refer to a good textbook
in networking (e.g. [33]) for details. In this protocol, packets to be transmitted from A to
B are numbered sequentially. This sequence number (SN) is sent in the packet header and
it is checked by the receiver.

Our model is a simple version of the go-back-n protocol. It consists of a Sender object
that transmits packets to another object and receives acknowledgments for packets cor-
rectly received. A Receiver object accepts packets from the Sender object and transmits
acknowledgments for packets that are received correctly.

In order to simplify our model, we assume that the round trip time (RTT) measured
from the time the sender transmitted a packet until it gets an acknowledgment back (as-
suming the packet was correctly received by the receiver and also that the acknowledgment
was received correctly by the transmitter) is included in the “Channel” object. This as-
sumption is useful to maintain the cardinality of the state space under reasonable size.
(The user is encouraged to relax this assumption and see what happens.) We also assume
that the ACK packets are small enough so that the its transmission delay is negligible.
Therefore only the propagation delays are included in the channel object. Furthermore, no

9.15. GO BACK N PROTOCOL MODEL 135

s
y
s
_
s
t
a
t
u
s
_
p
o
r
t

f
a
i
l
u
r
e
_
r
e
p
a
i
r
_
p
o
r
t

a
f
f
e
c
t
e
d
_
p
o
r
t

DATA
BASE

name=Database

Watches=
Failed
Can_Fail

name=Front_End

Watches=
Failed
Can_Fail

name=Processor

Watches=
Can_Fail

name=Repair_Center

Watches=
Component_Status

/* This model represents a system with a Database, a Front_End, a Processor

and a Repair Center.

The components can fail and the failure can affect the behavior of others

components. We obtain the availability of the system. */

Figure 9.30: The Database Model.

136 CHAPTER 9. EXAMPLES

Declaration=
State Var
Integer: Proc1_Fail, Proc2_Fail,Can_Fail;

Const
Float: FAILURE_RATE,PROB,COVERAGE;
Port: FAILURE_REPAIR,STATUS,AFFECT;
Object: REPAIR_CENTER;

name=Processor

Events=
event=Fail(EXP,FAILURE_RATE)

/* A processor fails if it can fail and at least one processor
 is operational */
condition = ((Can_Fail==1) && ((Proc1_Fail + Proc2_Fail) < 2))
action= {
 /* Fail mode 1, just sends a message to
Repair Center */
 int proc1_fail;
 proc1_fail = Proc1_Fail + 1;
 msg(FAILURE_REPAIR,REPAIR_CENTER,1);
 set_st("Proc1_Fail",proc1_fail);
 }: prob=PROB;

 {
	 /* Fail mode 2, sends a message to Database to fail
 and to Repair Center*/
 int proc2_fail;
 proc2_fail = Proc2_Fail + 1;
 msg(AFFECT,all,0);
 msg(FAILURE_REPAIR,REPAIR_CENTER,2);
 set_st("Proc2_Fail",proc2_fail);
 }: prob=((1-PROB)*(1-COVERAGE));

 {
	 /* Fail mode 2, just sends a message to Repair Center*/
 int proc2_fail;
 proc2_fail = Proc2_Fail + 1;
 msg(FAILURE_REPAIR,REPAIR_CENTER,2);
 set_st("Proc2_Fail",proc2_fail);
 }: prob=((1-PROB)*COVERAGE);

Messages=
msg_rec= STATUS
action={
 /* Repair Center sends a
 message to all objects indicating
 the system status. If
 msg_data = 0 -> system is down so
 object can NOT fail,
 msg_data = 1 -> system is up so object
 can fail. */
 int option;
 option = msg_data;
 set_st("Can_Fail",option);
 };

msg_rec= FAILURE_REPAIR
action={
 /* Repair Center sends a message
to this port indicating that
 this object was repaired and
the fail mode. */
 int proc1_fail, proc2_fail;
 proc1_fail = Proc1_Fail;
 proc2_fail = Proc2_Fail;
 if (msg_data == 1)
 proc1_fail = proc1_fail -1;
 else
 proc2_fail = proc2_fail - 1;
 set_st("Proc1_Fail",proc1_fail);
 set_st("Proc2_Fail",proc2_fail);
 };

Rewards=

Initialization=
Proc1_Fail =0
Proc2_Fail =0
Can_Fail =1 /*
1 means that the object can fail
0 means that the object can NOT fail */
FAILURE_RATE =0.0013
FAILURE_REPAIR= failure_repair_port
STATUS =sys_status_port
AFFECT =affected_port
REPAIR_CENTER= Repair_Center
PROB =0.5
COVERAGE =0.8

Watches=
Can_Fail

Figure 9.31: The Processor object (Database Model).

9.15. GO BACK N PROTOCOL MODEL 137

Declaration=
State Var
Integer : Component_Status[4];
 /* position 0:
 is the Front-end status
 position 1:
 is the Database status,
 position 2:
 is the quantity of Processors that fail in mode 1
 position 3:
 is the quantity of Processors that fail in mode 2

 value 0 means that the object is not failed
 value 1 means that the object is failed

 in the processors case it means the quantity of
 failed processors.
 */

Const

Float : PROC1_REPAIR_RATE, PROC2_REPAIR_RATE,
 FRONT_END_REPAIR_RATE, DATABASE_REPAIR_RATE;

Object: FRONT_END,DATABASE,PROCESSOR;

Port : FAILURE_REPAIR, STATUS;

name=Repair_Center Events=

event=Repair_Front_End(EXP, FRONT_END_REPAIR_RATE)
/* It repairs Front-end if it is failed. */
condition= (Component_Status[0] > 0)
action =
{
 msg(FAILURE_REPAIR, FRONT_END, 0);
 msg(STATUS, all, 1);
 set_st("Component_Status[0]", 0);
};

event= Repair_Database(EXP, DATABASE_REPAIR_RATE)
/* It repairs Database if it is failed and if there
 is at least one operational processor. */
condition= ((Component_Status[1] > 0) &&
 (Component_Status[2]+Component_Status[3]<2))
action =
{
 msg(FAILURE_REPAIR, DATABASE, 0);
 msg(STATUS, all, 1);
 set_st("Component_Status[1]", 0);
};

event= Repair_Proc1(EXP, PROC1_REPAIR_RATE)
/* It repairs the Processor that fail in mode 1 if:
 there is at least 1 processor that fails in mode
 and none of Front-end and Database is failed
 OR
 there is at least 1 processor that fails in mode
 1 and both processors are failed and database is
 failed too (if both processors are failed, the
 Repair needs to repair a processor before to
 repair the Database).*/

condition= (((Component_Status[2]>0) &&
(Component_Status[0]==0) &&
(Component_Status[1]==0)) ||
((Component_Status[2]>0) &&
(Component_Status[2]+Component_Status[3] == 2) &&
(Component_Status[1]==1)))
action =
{
 int component_status;
 msg(FAILURE_REPAIR, PROCESSOR, 1);
 component_status = Component_Status[2] - 1;
 if(Component_Status[1] == 0)
 /*All objects can fail. */
 msg(STATUS, all, 1);
 set_st("Component_Status[2]", component_status);
};

event= Repair_Proc2(EXP, PROC2_REPAIR_RATE)
/* It repairs the Processor that fail in mode 2 if:
 there is at least 1 processor that fails in mode
 2 and none of Front-end and Database is failed
 OR
 there is at least one processor that fails in
 mode 2 and both processors are failed and
 database is failed too (if both processors
 are failed, the Repair needs to repair a
 processor before to repair the Database).*/

condition= (((Component_Status[3]>0)&&
(Component_Status[0]==0) &&
(Component_Status[1]==0)) ||
((Component_Status[3]>0) &&
(Component_Status[2]+Component_Status[3] == 2) &&
(Component_Status[1]==1)))

action =
{
 int component_status;
 msg(FAILURE_REPAIR, PROCESSOR, 2);
 component_status = Component_Status[3] - 1;
 if(Component_Status[1]== 0)
 /*All objects can fail. */
 msg(STATUS, all, 1);
 set_st("Component_Status[3]", component_status);
};

Messages=
msg_rec = FAILURE_REPAIR
action=
{
 int component_status[4], index;
 index = 0;
 while(index < 4)
 {
 component_status[index] = Component_Status[index];
 index = index + 1;
 }
 if(objcmp(msg_source, FRONT_END))
 {
 component_status[0] = component_status[0] + 1;
 msg(STATUS, all, 0);
 }
 if(objcmp(msg_source, DATABASE))
 {
 component_status[1] = component_status[1] + 1;
 msg(STATUS, all, 0);
 }
 if(objcmp(msg_source, PROCESSOR))
 {
 if(msg_data == 1)
 component_status[2] = component_status[2] + 1;
 else
 component_status[3] = component_status[3] + 1;
 if(component_status[2] + component_status[3] == 2)
 msg(STATUS, all, 0);
 }
 set_st("Component_Status[]", component_status);
};

Rewards=

Initialization=
Component_Status = [0,0,0,0]
FRONT_END = Front_End
DATABASE = Database
PROCESSOR = Processor
FAILURE_REPAIR = failure_repair_port
STATUS = sys_status_port
PROC1_REPAIR_RATE = 0.8
PROC2_REPAIR_RATE = 1
FRONT_END_REPAIR_RATE = 1
DATABASE_REPAIR_RATE = 1

Watches=
Component_Status[0:3]

Figure 9.32: The Repair object (Database Model).

138 CHAPTER 9. EXAMPLES

DATA
BASE

Declaration=
State Var
Integer: Failed,Can_Fail;

Const
Float: FAILURE_RATE;
Port: AFFECT,FAILURE_REPAIR,STATUS;
Object:REPAIR_CENTER;

name=Database

Events=
event = Fail (EXP,FAILURE_RATE)
/* Database fails if it can fail and it is not failed. */
condition = ((Can_Fail == 1) && (Failed == 0))
action={
 msg(FAILURE_REPAIR,REPAIR_CENTER,0);
 set_st("Failed",1);
 };

Messages=
msg_rec = AFFECT
action = {
 /* Processor affects the database.*/
 if((Can_Fail == 1) && (Failed == 0))
 msg(FAILURE_REPAIR, REPAIR_CENTER, 0);
 set_st("Failed", 1);
 };

msg_rec=FAILURE_REPAIR
action={
 /* Repair Center sends a message to this port indicating that
 this object was repaired. */
 ;set_st("Failed", 0);
 };

msg_rec=STATUS
action={
 /* Repair Center sends a message to all objects indicating
 the system status. If msg_data = 0 -> system is down so
 object can NOT fail, msg_data = 1 -> system is up so object
 can fail. */
 int option;
 option = msg_data;
 set_st("Can_Fail", option);
 };

Rewards=
rate_reward = Data_avail
condition= (Failed == 0)
value = 1;

Initialization=
Failed = 0
Can_Fail = 1
FAILURE_RATE = 0.0003
AFFECT = affected_port
FAILURE_REPAIR = failure_repair_port
STATUS = sys_status_port
REPAIR_CENTER = Repair_Center

Watches=
Failed
Can_Fail

Figure 9.33: The Database object (Database Model).

9.15. GO BACK N PROTOCOL MODEL 139

sender timeout is modeled, and when the sender transmits all packets in a window it “goes
back” and retransmits from the beginning of the window. In order to obtain a Markov
model, all random variables are assumed to be exponentially distributed.

In the first model we present we assume that both packets and acknowledgments may
be lost. However, the receiver only sends ACK packets back to the transmitter when it
accepts a packet. The Sender object has two state variables: one, Win begin, indicates the
beginning of the transmitter window, and the other, SN, points to the sequence number of
the next packet to be transmitted. The Receiver object has only one state variable RN that
indicates the sequence number the receiver is expecting. That is, a packet with sequence
number equal to RN is accepted, if received correctly. The Channel object has two variables.
The first ACK RN indicates the serial number of the last ACK that was sent to the receiver.
(Note that this last ACK could have been lost.) The second variable N acks indicates the
number of ACK packets that are in transit in the channel. The model is shown in Figure
9.34.

The TANGRAM-II description of the objects is shown in Figures 9.35, 9.36 and 9.37.

We encourage the user to first try the model using p losing ack=0, that is, no ACK
packets are lost. This model has 18 states, considering the transmission window equal to
2 as in the figures. (Warning: the transmission window must be identical in all objects
since their specification uses this parameter.)

The impulse reward in the Channel object marks the transitions that represent a packet
accepted by the receiver (in this model, this event happens when an ACK is sent to the
channel). Using the marked transitions and the steady state results, the user can easily
compute the system throughput.

Now lets change p losing ack to the value in Figure 9.36, and solve it again. The
model now has 36 states. However, the Markov chain generated is not ergodic. Why?
Because we assumed the sender only sends ACKs back whenever it accepts a packet. Since
ACK packets can be lost, the sender may never receive an ACK for packets it sent. The
user should verify the following set of states: {14, 20}, {28, 33} and {34, 36}. Once the
model reaches any of these states, it remains in the corresponding set. You should also try
the interactive simulation and observe that the model reaches a deadlock state!

The tool, in this present version, does not check for ergodicity, and so the user must be
careful when specifying a model. Also some of the solvers cannot be used when the model
is not ergodic. For instance, the GTH solver will not produce the correct result. However,
the Power method can be used. You should verify the results with the Power method,
allowing sufficient iterations until convergence is reached.

In order to obtain a correct working protocol, the receiver must send ACK packets
whenever it receives a packet, not only when it accepts a packet. In our model, we also
modify the Channel object so that: (a) a duplicate ACK is discarded when the channel has
still ACKs to deliver and; (b) a duplicate ACK is not discarded if all ACK packets have
been delivered.

Following the new specification, the message attribute of the Receiver object is changed

140 CHAPTER 9. EXAMPLES

sender_receiver

r
e
c
e
i
v
e
r
_
c
h
a
n
n
e
l

c
h
a
n
n
e
l
_
s
e
n
d
e
r

/*Go_back_n protocol model*/

XII

VI

IIIX
I1

2
3
4
5...

Watches=
Win_Begin
SN

name=Sender

1
2
3
4
5...

Watches=
RN

name=Receiver

Watches=
Ack_RN
N_Acks

name=Channel

Figure 9.34: The Go Back N Model.

9.15. GO BACK N PROTOCOL MODEL 141

XII

VI

IIIX
I1

2
3
4
5...

Watches=
Win_Begin
SN

Initialization=
Win_Begin = 0
SN = 0
TRANS_WIN = 2
PKT_PORT = sender_receiver
ACK_PORT = channel_sender
TRANSMISSION_RATE = 1.0

Rewards=

Messages=
msg_rec = ACK_PORT
action = {
 int w_b, w_e, s, module, diff,
 order_of_SN_in_window,order_of_RN_in_window;

 w_b = Win_Begin;
 module = TRANS_WIN + 1;
 s = SN;

 /* The key steps below are used to identify the order
 of RN and SN inside the window. */

 diff = module - Win_Begin;
 order_of_SN_in_window = (s + diff) % module;
 order_of_RN_in_window = (int)(msg_data + diff) % module;

 w_b = (int)(msg_data) % module;

 if (order_of_RN_in_window > order_of_SN_in_window)
 {
 s = (int)(msg_data) % module;
 }

 set_st("Win_Begin",w_b);
 set_st("SN",s);
 };

Events=
event=SN_Transmission(EXP,TRANSMISSION_RATE)
condition=(TRUE)
action={
 int s, module, win_end;
 s = SN;
 module = TRANS_WIN + 1;
 win_end = (Win_Begin + TRANS_WIN - 1)%module;
 msg(PKT_PORT,all,SN);
 if (SN != win_end)
 /* increment SN since we haven’t reached the end
 of the windown */
 {
 s = (SN + 1)%module;
 }
 else
 /* Since we transmitted the last packet in the window
 Go Back to the beginning of the window */
 {
 s = Win_Begin;
 }
 set_st("SN",s);
 };

name=Sender Declaration=
State Var
 Integer:Win_Begin, SN;
Const
 Integer:TRANS_WIN;
 Float:TRANSMISSION_RATE;
 Port: ACK_PORT, PKT_PORT;

Figure 9.35: The Sender object (Go Back N Model) Model 1.

142 CHAPTER 9. EXAMPLES

Watches=
Ack_RN
N_Acks

Initialization=
Ack_RN = 0
N_Acks = 0
TRANS_WIN = 2
DELAY_RATE = 0.5
P_LOSING_PKT = 0.1
SEND_ACK_PORT = channel_sender
RECV_ACK_PORT = receiver_channel

Rewards=
impulse_reward= packet_accepted
Port = RECV_ACK_PORT,1
value= 1;

Messages=
msg_rec = RECV_ACK_PORT
action={
 int n_acks; /* number of acks stored in channel */
 int ack_rn; /* serial number of the last ack transmitted from channel.
 Note this last ack may have been lost */
 int module;
 int sn_last_ack; /* serial number of the last ack in channel to be
 or last ack sent if n_acks=0 */

 module = TRANS_WIN + 1;
 n_acks = N_Acks;
 ack_rn = Ack_RN;
 sn_last_ack = (ack_rn + n_acks)%module;
 if (msg_data == (sn_last_ack+1)%module)
 /* this is a new ack that is entering the channel */
 {
 n_acks = N_Acks + 1;
 }
 else
 /* this is a duplicate ack */
 {
 if (n_acks == 0)
 /* acks in channel have been lost, so send this duplicate ack */
 {
 n_acks = N_Acks + 1;
 /* ack_rn = ack_rn - 1, in Module */
 ack_rn = (ack_rn + TRANS_WIN)%module;
 }
 }
 set_st("N_Acks",n_acks);
 set_st("Ack_RN",ack_rn);
 };

Events=
event = Delayer(EXP, N_Acks * DELAY_RATE)
condition = (N_Acks > 0)
action = {
 /* Sends the ack and
 sets ACK_RN and N_acks variables. */
 int n_acks,ack_rn;
 ack_rn = (Ack_RN + 1)%(TRANS_WIN + 1);
 msg(SEND_ACK_PORT,all,ack_rn);
 n_acks = N_Acks - 1;
 set_st("N_Acks",n_acks);
 set_st("Ack_RN",ack_rn);
 }:prob = 1 - P_LOSING_PKT;
 {
 /* Just sets ACK_RN and N_acks variables. */
 int ack_rn, n_acks;
 ack_rn = (Ack_RN + 1)%(TRANS_WIN + 1);
 n_acks = N_Acks - 1;
 set_st("N_Acks",n_acks);
 set_st("Ack_RN",ack_rn);
 }:prob = P_LOSING_PKT;

name=Channel Declaration=
State Var
 Integer: Ack_RN, N_Acks;
Const
 Integer: TRANS_WIN;
 Float:DELAY_RATE, P_LOSING_PKT;
 Port: SEND_ACK_PORT, RECV_ACK_PORT;

Figure 9.36: The Channel object (Go Back N Model). Model 1

9.15. GO BACK N PROTOCOL MODEL 143

1
2
3
4
5...

Watches=
RN

Initialization=
RN = 0 /* expected serial number */
P_LOSING_PKT = 0.3
TRANS_WIN = 2
ACK_PORT = receiver_channel
PKT_PORT = sender_receiver

Rewards=

Messages=
msg_rec = PKT_PORT
action ={
 int s;
 s = RN;
 if (msg_data == RN)
 {
 s = (RN + 1) % (TRANS_WIN+1);
 msg(ACK_PORT,all,s);
 set_st("RN",s);
 }
 else
 {
 msg(ACK_PORT,all,s);
 }
 }:prob = 1 - P_LOSING_PKT;
 {
 /*do nothing*/
 ;
 }:prob = P_LOSING_PKT;

Events=

name=Receiver

Declaration=
State Var
 Integer: RN;
Const
 Float: P_LOSING_PKT;
 Integer: TRANS_WIN;
 Port: ACK_PORT, PKT_PORT;

Figure 9.37: The Receiver object (Go Back N Model) Model 1.

144 CHAPTER 9. EXAMPLES

to:

msg_rec = PKT_PORT

action ={

int s;

s = RN;

if (msg_data == RN)

{

s = (RN + 1) % (TRANS_WIN+1);

msg(ACK_PORT,all,s);

set_st("RN",s);

}

else

{

msg(ACK_PORT,all,s);

}

}:prob = 1 - P_LOSING_PKT;

{

/*do nothing*/

;

}:prob = P_LOSING_PKT;

The message attribute of the Channel object is changed to:

msg_rec = RECV_ACK_PORT

action={

int n_acks; /* number of acks stored in channel */

int ack_rn; /* serial number of the last ack transmitted from channel.

Note that this last ack may have been lost */

int module;

int sn_last_ack; /* serial number of the last ack in channel to be

or last ack sent if n_acks=0 */

module = TRANS_WIN + 1;

n_acks = N_Acks;

ack_rn = Ack_RN;

sn_last_ack = (ack_rn + n_acks)%module;

if (msg_data == (sn_last_ack+1)%module)

/* this is a new ack that is entering the channel */

{

n_acks = N_Acks + 1;

}

else

/* this is a duplicate ack */

{

if (n_acks == 0)

/* acks in channel have been lost, so send this duplicate ack */

{

n_acks = N_Acks + 1;

/* ack_rn = ack_rn - 1, in Module */

ack_rn = (ack_rn + TRANS_WIN)%module;

}

}

set_st("N_Acks",n_acks);

set_st("Ack_RN",ack_rn);

};

One final observation: note that the impulse reward attribute in this last model marks
all the transitions corresponding to an ACK packet being received, and no distinction is

9.16. MULTIPLEX CHANNEL 145

made between a duplicate ACK or an ACK for a new packet accepted by the receiver. The
user is encouraged to find out how to calculate the system throughput in this new model.

9.16 Multiplex Channel

9.16.1 Model Description

This example shows two sources sharing a channel using time-division multiplexing (TDM).
In the objects q1 and q2 packets are generated and served if the object has the token. The
token stays with q1 or q2 until one of the following two events occurs: (1) a timeout expires
(the timeout is the upper bound for the time an object can remain with the token) or (2)
the queue is empty. The Channel object manages the token. When there is no packets to
serve in the system, the token remains with the Channel object until a packet is generated
in q1 or q2.

There are three objects in the model:

Channel this object sends the token to q1 and q2. If the queues do not have packets, the
token remains with the channel.

q1 and q2 these objects have three events:

1. Packet Arrive: generation of packets at exponentially-distributed intervals;

2. Service: transmission of the first packet in the queue if the object has the token;

3. Timeout: sends the token to the channel.

The model is shown in Figure 9.38.
The TANGRAM-II description of the queue object is shown in Figure 9.39.

9.16.2 Solving the Model

For this model, we will give special attention on how to use an approximation technique to
calculate the Expected Cumulative Rate Reward (ESRA). For more references about this
method see [22].

We have to specify a measure of interest using rewards. In this example, we can specify
the total time an object holds the token, using a rate reward in the Reward’s attribute:

rate_reward = token_queue_1

condition = (token == 1)

value = 1;

It is possible to compute the expected cumulative rate reward for a subset of states. The
subset of states has to be specified using the global reward object. Only the objects that
satisfy the global reward condition will be included in the subset. In this example, we want
to consider all states so the syntax of the global reward is the following:

146 CHAPTER 9. EXAMPLES

M

name=Queue_2

Watches=
Buffer
Token

M

name=Queue_1

Watches=
Buffer
Token

global_rewards=

rate_reward = states
 condition = (TRUE)
 value = 1;

Send_Token

Send_Token

Send_Token

/* This models represents two sources that share one channel (using TDM).

The objects (Queue_1) and (Queue_2) represent the packet generation and

service events. The queue having the token can serve the packets until

queue size is equal to zero or a timeout event occurs. In this case,

the token is passed to another queue. The token is managed by the channel object. */

name=Channel

Watches=
Empty_Queue
Token
Last_Served

Figure 9.38: The Multiplex Channel Model.

9.16. MULTIPLEX CHANNEL 147

M

Declaration=
Var
 State:Buffer,Token;

Const
Integer:MAX_BUFFER;
Float: PACKET_RATE, SERVICE_RATE,TIMEOUT_RATE;
Port:SEND_TOKEN, FIRST_PACKET;
Object:OBJ;

name=Queue_1

Events=
event =Packet_Arrive(EXP, PACKET_RATE)
condition =(Buffer < MAX_BUFFER)
action ={
 int buffer;
 buffer = Buffer;
 if((buffer == 0) && (Token == 0))
 msg(FIRST_PACKET,all,1);
 buffer++;
 set_st ("Buffer",buffer);
 };

event =Service(EXP, SERVICE_RATE)
condition =(Token == 1)
action ={
 int buffer, token;
 buffer = Buffer;
 token = Token;
 buffer--;
 if(buffer == 0)
 {
 msg(SEND_TOKEN,all,0);
 token = 0;
 }
 set_st("Buffer", buffer);
 set_st("Token",token);
 };

event =Timeout(EXP, TIMEOUT_RATE)
condition =(Token == 1)
action ={
 msg(SEND_TOKEN, all, 1);
 set_st ("Token", 0);
 };

Messages=
msg_rec =SEND_TOKEN
action ={
 int token;
 token = Token;
 if(objcmp(msg_source, OBJ))
 {
 if((token == 0) &&
 (msg_data == 1))
 {
 if(Buffer == 0)
 msg(SEND_TOKEN,all, 2);
 else
 token = 1;
 }
 }
 set_st("Token",token);
 };

Rewards=
rate_reward = prop_token
 condition = (Token == 1)
 value = 1;

Initialization=
/*Constant Initialization*/
PACKET_RATE = 0.75
SERVICE_RATE = 3.75
TIMEOUT_RATE = 0.5
MAX_BUFFER = 2
SEND_TOKEN = Send_Token
FIRST_PACKET = First_Packet
OBJ = Channel

/*State Vars Initialization*/
Buffer = 0
Token = 0

Watches=
Buffer
Token

Figure 9.39: The Queue Object.

148 CHAPTER 9. EXAMPLES

global_rewards=

rate_reward = states

condition = (TRUE)

value = 1;

To solve the model, click on the Analytical Model Solution button. Choose the Transient
→ Expected Values → ESRA → Direct Technique.

In the next step, we input the following parameters: Initial Probability, Time Intervals,
Total number of Erlang Stages, Block Set (in this method the matrix is block-partitioned)
and the Measure of Interest.

Initial Probability : Initial State

Time Intervals = 5 1

Erlang Stages = 10

Block Set = 1 29 1

Measure of Interest = Set Reward

Reward Name =

multiplex_channel.rate_reward.Queue1.token_queue_1

(See [22] for more information about the Erlang Stages parameter.) The result is printed
in the file
Multiplex Channel.TS.DIRECT.Cumulative SET Reward.
This file has some information about the parameters considered in the solution and the
expected rate reward accumulated at each time interval in the subset of states. In this
example, the rate reward is the total time queue 1 holds the token.

9.17 The Geometric-sized Bulk Arrivals Model

9.17.1 Model Description

This model represents a M [X]/M/1/K queueing system where X is a geometric random
variable. It is basically made of the same objects as the M/M/1/K model (Poisson source
and Exponential server), with an additional object acting as an interface between the two,
as shown in figure 9.40.

The Geometric Bulk object receives the Packet Generation events from the Poisson
source and generates a number of packets for the exponential server that is geometrically-
distributed with parameter P , where P is a constant declared in the object. In this example,
we are not very concerned with taking measures from the system but instead we will focus
on the modeling technique employed in the Geometric Bulk object.

9.17. THE GEOMETRIC-SIZED BULK ARRIVALS MODEL 149

P

1-P

name=Geometric_Bulk

M

name=Server_Queue

Watches=
 Queue

P

name=Poisson_Source

Exponential Queue with Geometric Bulk Arrivals
generated by a Poisson Process.
In the case of overflow, then part of the bulk
may be admitted.

Figure 9.40: The Geometric bulk arrivals model.

9.17.2 Recursion with Tangram messages

Imagining the Geometric Bulk object from figure 9.41 as a closed black box, all one can see
is that it transforms a single message received by it into a new set of X messages, where
X is a strictly positive geometric random variable. In order to accomplish that, it needs
to perform a few tricks.

The object has a reference to itself, denoted by the constant MYSELF declared with the
Object type. Upon receiving a message at port PORT IN, the object executes one of two
possible actions:

• With probability P , it sends the final message in the bulk through PORT OUT and
stops.

• With probability 1− P , it sends a message to the server and another one to itself at
PORT IN, which regenerates the process.

The recursive messages keep ocurring until the state with the queue full is reached. From
there, when a new message is generated by the bulk object, the model remains at the same
state and Tangram stops the recursion.

If the server queue has a maximum size of N customers, then the Tangram-II Markov
chain generator explores the state space as depicted in figure 9.42.

In conclusion, we may notice that with the idea of recursive messages, Tangram-II can
generate state spaces that, at first, may not be obvious how to model.

150 CHAPTER 9. EXAMPLES

name=Geometric_Bulk

Declaration=
 Const
 Port: PORT_IN, PORT_OUT;
 Float: P;
 Object: MYSELF;

Initialization=
 /* Geometric distribution */
 P = 0.9

 /* Ports */
 PORT_IN = wire1
 PORT_OUT = wire2

 /* Pointer to self */
 MYSELF = Geometric_Bulk

Messages=
 msg_rec = PORT_IN
 action =
 {
 /* With probability (1-P)
 send one packet and
 recursively send the message
 to itself once more */
 msg(PORT_OUT, all , 0);
 msg(PORT_IN , MYSELF, 0);
 } : prob = 1.0 - P;
 {
 /* With probability P,
 send the final packet
 from the bulk */
 msg(PORT_OUT, all , 0);
 } : prob = P;

1-p

p

Figure 9.41: The Geometric Bulk object.

0

Initial
State

N

Executing the first action statement.

Executing the second action statement.

1-P

P
...

1-P

P

1-P

P

1-P

P

1-P

P

N-1321 N

Figure 9.42: The recursion tree generated by Geometric Bulk object from the initial state.

9.18. THE BINOMIAL-SIZED BULK ARRIVALS MODEL 151

9.18 The Binomial-sized Bulk Arrivals Model

9.18.1 Model Description

As a sequel to the previous example, this model also represents a M [X]/M/1/K queueing
system, though here X is a binomially-distributed random variable. Again, the only dif-
ference between this model and the basic M/M/1/K model is the additional object that
generates binomially-distributed bulks from the Poisson process generated by the source.
The model is depicted in figure 9.43.

P

P

P

1

2

N

...

name=Binomial_Bulk

M

name=Server_Queue

Watches=
 Queue

P

name=Poisson_Source

Exponential Queue with Binomial Bulk Arrivals
generated by a Poisson Process.
In the case of overflow, then part of the bulk
may be admitted.

Figure 9.43: The Binomial bulk arrivals model.

9.18.2 Limited Recursion and Vanishing States

In this case recursion is also used to generate the bulks of messages, but it has an fixed
limit defined by the positive integer constant N , which along with the constant probability
P , form the set of parameters for the binomial distribution.

As figure 9.44 shows, whenever the Binomial Bulk object receives a message, it can be
forwarded to the server if the action with probability P is executed, and then, in either one
of the action codes, it will check whether the state variable TempN is greater than zero.
In the positive case, it will decrease TempN by one and send another message to itself.
Otherwise it will reset TempN to N and finish the recursion.

It is clear from the previous explanation and from the code, that the recursion in the
Binomial Bulk object takes place at most N consecutive times. It can happen less than N
times if the process reaches a state where the queue is full.

The important thing to notice in this example is that, in order to generate a fixed size
recursion, we need to add a new state variable to the model for keeping track of how deep
the recursion is so far.

152 CHAPTER 9. EXAMPLES

P

P

P

1

2

N

...

Declaration=
 Const
 Port: PORT_IN, PORT_OUT;
 Float: P;
 Integer: N;
 Object: MYSELF;

 Var
 Integer: TempN;

name=Binomial_Bulk Messages=
msg_rec=PORT_IN
action=
{
 int temp_n;

 /* With probability P, send another packet */
 msg(PORT_OUT, all, 0);

 if(TempN > 0)
 {
 msg(PORT_IN, MYSELF, 0);
 temp_n = TempN-1;
 }
 else
 {
 /* Reset the binomial distribution */
 temp_n = N;
 }

 set_st("TempN", temp_n);
} : prob=P;
{
 int temp_n;

 /* With probability 1-P, skip this packet */

 if(TempN > 0)
 {
 msg(PORT_IN, MYSELF, 0);
 temp_n = TempN-1;
 }
 else
 {
 /* Reset the binomial distribution parameter */
 temp_n = N;
 }

 set_st("TempN", temp_n);
} : prob=1.0-P;

Initialization=
 /* Binomial distribution */
 P = 0.5
 N = 10

 /* Initialized to N */
 TempN = 10

 /* Ports */
 PORT_IN=wire1
 PORT_OUT=wire2

 /* Pointer to self */
 MYSELF=Binomial_Bulk

Figure 9.44: The Binomial Bulk object.

9.18. THE BINOMIAL-SIZED BULK ARRIVALS MODEL 153

In the previous example, the model did not require this, because it refered to a geometric
distribution, which has the memoryless property. This way, each step of the recursion can
be determined without the use of any memory (state variables).

Since the geometric distribution is also the only discrete memoryless distribution, any
other kind of batch size distribution (including the binomial case) will have to add new
state variables to allow Tangram-II to generate the model’s state space and transition rates.

At first, one might think this is bad, since adding a new state variable might increase
the state space, but it turns out this does not happen. To explain why, we need to consider
an example of what happens during the chain generation procedure for this model.

Suppose the model is set initially to the state where the queue is empty, and let
our state tuple be defined as (Server Queue.Queue,Binomial Bulk.T empN). Since the
Binomial Bulk object requires that TempN be initialized to N , and having N = 3 in this
example, our initial state will be (0, 3). We further assume that the maximum number of
customers in the queueing system is 10.

When an arrival event happens, while the model is in the initial state, the sequence of
execution in the model can be illustrated by the diagram shown in figure 9.45.

0,3 0,2

1,2

0,1

1,1

2,1

0,0

1,0

2,0

3,0

0,3

1,3

2,3

3,3

P

P

P

P

P

P

1-P 1-P 1-P

1-P 1-P

1-P

Probability
(1-P)3

3 P (1-P)2

3 P2 (1-P)

P3

timet
Event start time

t
Event finish time

Vanishing States
Time span = 0

Rate
λ

1st Action Code - add a packet to the bulk with probability P

2nd Action Code - do not add a packet to the bulk with probability 1-P

Figure 9.45: The Binomial bulk generation process from the initial state.

154 CHAPTER 9. EXAMPLES

Notice that the recursion ends when TempN reaches zero, being reset to N = 3. All
the message exchanging happens in zero time, with the generation of several intermediate
states, in which the value of TempN can be 0, 1 and 2, but after the recursion the model
always ends up with TempN = 3. Because of this, all the intermediate states do not show
up in the final state space (as shown in figure 9.46), and so are called vanishing states.

0,3

0,3

1,3

2,3

3,3

λ (1-P)3

3 λ P (1-P)2

3 λ P2 (1-P)
λ P3

0,3

0,3

1,3

2,3

3,3

(1-P)3

3 P (1-P)2

3 P2 (1-P)

P3

Rate λ

Probability

Vanishing
States

Figure 9.46: Transitions generated by the arrival event at the initial state.

After generating the state space for this model, all the states will have TempN = N .
The main lesson to learn here is that even though the TempN variable is not necessary to
describe the state space (since it equals the constant N in all states), it is essential to the
state generation procedure.

Chapter 10

Whiteboard

10.1 Introduction

This section describes a whiteboard tool built on top of TGIF: TGWB (Tangram White-
board). TGIF (Tangram2 Graphic Interface Facility) is a Xlib based interactive 2-D draw-
ing facility under X11. The tgif tool is a powerful vector based drawing tool. The user
draws objects, i.e., rectangles, lines, circles and splines, over a drawing area. Objects
may be transformed - for instance, rotated, translated and flipped. New objects may be
constructed by grouping other objects. The tgwb allows simultaneous modifications in
drawings by users in a group. It is a versatile multicast distributed tool. TGWB interface
is shown in Figure 10.1, where two users are editing a Tangram-II model.

Figure 10.1: TGWB: Tangram Whiteboard interface.

155

156 CHAPTER 10. WHITEBOARD

Distributed whiteboards must ensure that every member in a session has the same
view of the drawings. A Reliable Multicast Library and a total ordering mechanism was
developed to allow reliable multicast transmission and member view consistency. Further
information about those issues can be found at [35].

10.2 Using TGWB

10.2.1 Environment

The TGWB tool was develop to be used in a IP Multicast network. If Multicast is not avail-
able one can use the mcastproxy program to connect the whiteboards. More information
about mcastproxy can be found in section 10.2.3.

10.2.2 TGWB Configuration

The reliable multicast transmission was implemented as a function library called RML (Re-
liable Multicast Library) [35]. When tgwb is started the user is prompted for configuration
options, such as multicast address and port and whether or not the mcastproxy (see section
10.2.3) program should be started. Another way to customize RML options is editing the
configure file tgwb.conf, located at .tgwb directory in the user’s home.

#Reliable Multicast Library configuration file

#Reliable Multicast Library version

RM_VERSION=1.0

#Transmission mode: 0 multicast (default), 1 unicast

TRANSMISSION_MODE=0

#Multicast or Unicast IP address to send data (destination IP)

DEST_IP=225.2.2.10

#Multicast or Unicast port to send data (destination port)

DEST_PORT=5151

#Time to live for the packets setting (1 indicates local network)

TTL=1

#Inter-packet sleep timer:

#Time between packet transmissions (choose from 0 to 65535 microseconds)

MICROSLEEP=10

#Log file path - NULL disable logging (default)

LOG_FILE=NULL

#Random Timers Distribution: 0 uniform 1 exponential

TIMER_DISTRIBUTION=0

#Timer parameters

Timers values are obtained in the intervals:

10.2. USING TGWB 157

(TIMER_PARAM_A*T,(TIMER_PARAM_A+TIMER_PARAM_B)*T)

for NAKs

(TIMER_PARAM_C*T,(TIMER_PARAM_C+TIMER_PARAM_D)*T)

for wait for retransmitions

(TIMER_PARAM_E*T,(TIMER_PARAM_C+TIMER_PARAM_F)*T)

for for retransmitions

Where

TIMER_PARAM_A, TIMER_PARAM_B, TIMER_PARAM_C,

TIMER_PARAM_D, TIMER_PARAM_E and

TIMER_PARAM_F are integer constants

T is the estimated one-way delay to the senders

TIMER_PARAM_A=2

TIMER_PARAM_B=2

TIMER_PARAM_C=5

TIMER_PARAM_D=2

TIMER_PARAM_E=2

TIMER_PARAM_F=2

#Host related parameters and timers:

Must contain exactly the following lines:

HOSTS_IDENTIFIED=0

DEFAULT <AVERAGE_ESTIMATED_DELAY>

host1 <ESTIMATED_ONE-WAY_DELAY_TO_host1>

host2 <ESTIMATED_ONE-WAY_DELAY_TO_host2>

...

hostN <ESTIMATED_ONE-WAY_DELAY_TO_hostN>

If HOSTS_IDENTIFIED=0 then we will read only the DEFAULT

estimated delay.

HOSTS_IDENTIFIED=0

DEFAULT 300

#Max number of naks that can be sent for each packet. 100 (default)

MAX_NAK=100

We will be able to retransmit the last MAX_MEMBER_CACHE_SIZE packets

from each member of the multicast group, i.e., we will store the last

MAX_MEMBER_CACHE_SIZE PACKETS from each member of the multicast group

in the cache. 4000 (default)

#

WARNING: if you set MAX_MEMBER_CACHE_SIZE to low values the protocol

may fail!

#

MAX_MEMBER_CACHE_SIZE=4000

#Enable support for new members 1 enabled (default), 0 disabled

NEW_MEMBER_SUPPORT=0

#Show transmission statistics: 0 disabled (default) 1 enabled

STATISTICS=0

#Time between transmission of refresh messages (seconds)

REFRESH_TIMER=10

#Loss simulation: 0 disabled (default) any float number > 0 enabled

#

A note about loss simulation:

When loss simulation is enabled (LOSS_PROB > 0) we always loose the

first 10 received packets, and the first received data packet -

158 CHAPTER 10. WHITEBOARD

that is, the first burst of received packets.

After that, packets are lost according to LOSS_PROB.

Example: LOSS_PROB=30

The first 10 received packets will be lost.

Then, 30% of the packets will be lost

LOSS_PROB=0

Time to wait, in microseconds, before leaving the multicast group.

LEAVE_GROUP_WAIT_TIME = 500000

Size of the buffer of the receiver host

(maximum size of a message that may be processed by the receiver host).

RCV_BUFFER_SIZE = 10000

10.2.3 mcastproxy

When IP Multicast is not available the mcastproxy program can be used to connect hosts.
Suppose that students from four different campi want to use TGWB. Suppose also that
multicast is available in the local networks but it is not available among the campi. In
that scenario, the mcastproxy program can be used to connect each campi. As shown in
Figure 10.2, there is one instance of mcastproxy in each campus. Each mcastproxy instance
can listen to local multicast traffic and send it unicast to each other campus. The packets
received through unicast are sent through multicast to local users.

mcastproxy

UFJF

mcastproxy

UFF

UFRJ

mcastproxy mcastproxy

UMASS

Unicast transmission

Multicast transmission

Figure 10.2: mcastproxy environment example

mcastproxy program uses a configuration file, mcastproxy.conf from the .tgwb direc-
tory located at user’s home. Next is presented an example of this file.

#Multicast group address

GROUPADDR=225.1.2.3

10.2. USING TGWB 159

#Number of hosts to send unicast packets

NADDR=2

#IP Addresses list to send unicast packtes

ADDRLIST

192.168.1.2

10.0.0.1

Time to live for multicast packets

TTL=1

REUSEADDR=0

Loopback: 1 enable, 0 disable

LOOPBACK=1

Unicast port to use

UCASTPORT=32566

Multicast port to use

MCASTPORT=5151

160 CHAPTER 10. WHITEBOARD

Chapter 11

Modeling Tool Kit

11.1 Introduction

The Modeling Tool Kit (MTK) is a programming framework, for TANGRAM-II, where
users can develop different types of mathematical models and algorithms, and use them
together in a single environment. It offers its users the ease of working, at the same time,
under the same tool, with distinct models, of different types, apply them to the same
problem, and compare their results. It also allows users to expand the set of available
types of models, by programing and inserting new, customized ones, into the tool.

MTK is build up of, basically, two parts: a main structure, composed by the MTK
interface, and a set of different plugins, that can be added or removed by the user. Figure
11.1 shows this architecture. The MTK interface resides in the highest layer level and,
through it, users can interact with the available plugins. The interface/plugin communica-
tion is done through a library, called libmtk, which, therefore, resides in the intermediate
layer of the hole structure. Finally, the plugins, which are, in fact, a blueprint from which
different models are created, reside in the lowest layer level.

Each plugin works as black box, and defines a specific type of mathematical model. Its
code must be self-contained, in such a way that its implementation cannot depend on other
plugins. By this, it is guaranteed that a plugin removal (or addition) will not compromise
the entire tool or the other plugins. Just like a class in the object oriented paradigm, each
plugin is composed of attributes and methods, which all models created from that plugin
share, and which can be accessed or executed by the user.

In order to enable plugin communication with the MTK structure and with other plu-
gins, the types of models implemented in the MTK framework must follow a programming
template. This fact should not be viewed as a limitation, since language freedom is not
attenuated, and the programmer has only to adjust the way he or she implements the code.
From the users point of view, it is much more comfortable to work with all models in a
single environment than having many standalone programs, with distinct input and output

161

162 CHAPTER 11. MODELING TOOL KIT

Shell GUI

libmtk

Main Structure

plugins

Figure 11.1: MTK block architecture

standards.

The MTK framework was develop during the work of [44], as the author realized the
similarity between the studied models, and needed to compare their results using the same
input data. Since then, some other authors have contributed with new plugins.

11.2 Getting Started

In this section, we will take you through a short tutorial, to help you get acquainted with
the main features of MTK. If you are already familiar with them, and are looking for
detailed information on a specific plugin, we recommend you jump right to section 11.5,
were we describe, individually, each of the available plugins. Our goal, here, will be to build
a hidden Markov model to adequately represent a coin-tossing game, described below, and
use it to forecast its future outcomes.

Suppose you are in a casino and, while walking through the main floor, you notice that
there is a new strange game available, called Thank Paty the Parrot!. Curious, you walk
up to the table, which has a green parrot standing on top of it, and ask the dealer about
the game. Its rules are very simple. There are two coins inside a small basket, over the
table, in front of the parrot. In each round, the parrot randomly chooses one, picking it
up with his beak, and hands it over to the dealer. The dealer, then, flips the coin into the
air. If it lands showing tails, you win 1 dollar for every dollar bet, doubling your money.
Otherwise, if it lands showing heads, the casino keeps all the money you bet. After the
bets are payed, the dealer puts the coin back into the basket, shuffles it, and places it,
again, in front of the parrot.

11.2. GETTING STARTED 163

When asked about the coins, the dealer says that, despite being visually identical,
they have different biases. One has a significant greater probability of showing heads, and
the other has a significant probability of showing tails. So your chances of winning are
conditioned on the parrots choice, thus the name Thank Paty the Parrot!. Paty, as you,
can’t tell the difference between both coins, but knows that every time he chooses one, he
gets a nice pat on the head.

After hearing the explanation, you remember having read, just last week, a paper on
hidden Markov models (HMM) [39], and how they can be applied to situations just like the
one described to you. Feeling that, finally, all that studying might pay off, you convince
yourself that this is the game that’s going to get you some money!

But before playing, you have to build your HMM model. To do this, you must first
collect some observations, that will be used to estimate the parameters of the model.
So you decide to observe others playing, and take notes on the outcomes of the coins.
Your observations are recorded in the file trace.txt1 in which a 1 represents tails, and a 0
represents heads. After collecting 1000 observations2, you head home and, using MTK,
start building your HMM model.

11.2.1 Setting Up MTK

Before running MTK, you must first specify the directory were the plugins - the <plugin name>.pgn
files - are located. This can be done by setting a MTK PATH environmental vari-
able to point to this location. Since these plugins will usually be located in the $TAN-
GRAM2 HOME/lib/mtk plugins/ directory, all you have to do is insert a line, similar to
the one bellow, in your .bashrc file.

export MTK_PATH=$TANGRAM2_HOME/lib/mtk_plugins/

If, for some reason, you have other plugins located elsewhere, or just want to specify a
new directory without changing the MTK PATH variable, you can use the -p <directory>
option, in the command line, when running mtk.

11.2.2 Starting MTK

Start MTK by typing mtk on the command line. The command line interface will appear,
as shown in Figure 11.2(a). MTK has also a graphical interface, shown in Figure 11.2(b),
that can be called upon by using the -g option: mtk -g.

In the rest of this manual, we will focus on the command line interface, since the
graphical one is intuitive.

1This file is part of MTK, and can be found in <diretório X>.
2OK, so this is an unreal number of observations to collect in a scenario like this, but so is a parrot

standing on top of a casino table, right?

164 CHAPTER 11. MODELING TOOL KIT

(a) (b)

Figure 11.2: MTK interfaces: (a) shell interface; (b) graphical interface.

11.2.3 First Steps

After we have started MTK, our first step will be to check which plugins are available, and
if we have one that allows us to work with a hidden Markov model. This can be done with
the list command:

Example:

MTK:1> list plugins

Available Plugins

example - Example plugin

floatvalue - Float Value Samples

ghmm - Hierarchical Gilbert Hidden Markov Model

hmm - Hidden Markov Model

hmm_batch - Hierarchical General Hidden Markov Model - Fixed Batch

hmm_batch_variable - Hierarchical General Hidden Markov Model - Variable Batch

intvalue - Integer Value Samples

To obtain information about any plugin, or even about some plugin method, use the help

command:

help <plugin name>
or
help <plugin name>.<method name>

11.2. GETTING STARTED 165

Example:

MTK:2> help hmm

This plugin defines a discrete-time, discrete-space hidden Markov

model. Both observations and hidden states are non-negative 32-bit

integers.

Constructors: hmm()

hmm(<N>, <M>)

Where:

<N> - number of hidden states.

<M> - number of observation symbols.

Available attributes

N - number of hidden states

M - number of observation symbols

pi[i] - initial probability for the i-th state

A[i][j] - transition probability from state i to state j

B[i][j] - probability of symbol j at state i

result[i] - result array of last executed command

Available displays

all - model parameters

pi - initial state distribution

A - state transition matrix

B - observation probability matrix

Available methods

load save normalize

training simulate viterbi

likelihood forecast import_from_tangram

set_full set_coxian set_qbd

set_gilbert fix_full fix_coxian

fix_qbd fix_gilbert set_epsilon

symb_sum_dist symb_tavg state_prob

166 CHAPTER 11. MODELING TOOL KIT

So far so good! MTK has a plugin that allows us to work with a hidden Markov model
- the hmm plugin. Now let’s get to work!

11.2.4 Creating and Working with Objects

As we said in section 11.1, each plugin is a blueprint from which models are created, just
like a class in the object oriented paradigm. Using this same analogy, we will call each
model created, from a specific plugin, an object. MTK allows you to create, and work, at
the same time, with different objects, created or not from the same plugin. This is very
useful when we want to test the same type of model, only with different parameters, to the
same problem.

This said, its time to create our HMM model. Any object, on MTK, can be created
with the new command:

<object name> = new <plugin name> (<parameters>)

Example:

MTK:3> game_model = new hmm(2, 2)

hmm object was successfully created with name game_model

Parameters were initialized with random values.

Model error tolerance is epsilon = 0.000010

We have chosen to create a HMM with two states and two symbols for obvious reasons:
there are only two coins, hence, we will use one state represent each; there are, also, only
two possible outcomes, heads or tails, and thus, we need only two symbols.

After creating our HMM model, we need to load, into MTK, the observations collected,
stored in the trace.txt file, which we will use to adjust the parameters of our model. MTK
has two plugins that reproduce an array of elements, and can be used to work with observa-
tion samples: the intvalue plugin, and the floatvalue plugin. The first one handles only
integer value data, and the second, float value data. Since our observations are composed
of, only, 0’s and 1’s, we will use the intvalue plugin. This said, let’s create and load our
trace file into MTK.

Example:

MTK:4> trace = new intvalue()

MTK:5> trace.load("trace.txt")

A plugin usually implements some display function, which shows, on screen, some of
the objects attributes. Specifically, the intvalue plugin has a display called stats, which
calculates and shows some statistics of the object.

Example:

11.2. GETTING STARTED 167

MTK:6> trace.display(stats)

’stats’ at ’trace’

Minimum: 0

Maximum: 1

Mean: 0.48

Variance: 0.24985

We are now ready to adjust our HMM model parameters. This can be accomplished
with the training command, present in the hmm plugin. It estimates the model param-
eters by maximizing the likelihood of a sample, given as input, using the Baum-Welch
algorithm[5]. To obtain information on this, or any other method, from any other plugin,
you can use the help command:

help <plugin name>.<method name>

Example:

MTK:7> help hmm.training

Estimates the model parameters by maximizing the likelihood of a

given observation sample. In case this sample is composed of

incomplete data (observations only) the Baum-Welch algorithm is

used. Multiple observation samples can also be used.

Usages: training(<it>, [<thr>], <object1> [, ...])

training(<object1>, <object2>)

Where:

<it> - number of iterations to perform in the

Baum-Welch algorithm.

<thr> - log-likelihood threshold to stop training.

<object1> - the object containing the observations.

<object2> - the object containing the states path.

As it is well known, the reestimation equations, used by the Baum-Welch algorithm,
give values of the HMM parameters which correspond to a local maximum of the likelihood
function[39], but they do not guarantee that this maximum is also the global maximum.
Therefore, the initial estimates of these parameters, chosen by the user, play, usually, an
important role on the estimation. By default, MTK initializes the parameters of a hmm

object with random values. Hence, in order to try and get a better estimation, we will,
before training our model, change these initial values.

Every attribute, from every plugin, can be edited by the user, at any time. What we
want to do, is to change the values of the hmm attributes pi, A and B, which correspond,
respectively, to: the initial state distribution, the state transition probability matrix, and

168 CHAPTER 11. MODELING TOOL KIT

the symbol emission probability matrix. We know a bit about the symbol emission prob-
ability. Recall that, despite not telling us the exact bias of each coin, the dealer told us
that it is significant. The problem is, what does he mean by ”significant”? Let’s take a
guess. Say each coin has a bias of 0.6 probability. Since we don’t know anything about
the way the parrot chooses the coins, let’s assume that he is totally unbiased. With these
assumptions made, it is time to change the desired attributes of our model. This can,
normally, be accomplished using the following syntax:

<object name>.<attribute name>[<index>] = <value>

Example:

MTK:8>game_model.pi[0] = 0.5; game_model.pi[1] = 0.5;

MTK:9>game_model.A[0][0] = 0.5; game_model.A[0][1] = 0.5;

game_model.A[1][0] = 0.5; game_model.A[1][1] = 0.5;

MTK:10>game_model.B[0][0] = 0.6; game_model.B[0][1] = 0.4;

game_model.B[1][0] = 0.4; game_model.B[1][1] = 0.6;

After setting the initial parameter values, and reading the help information above, on
the training method, estimating the parameters of our model should be straightforward.
We will use 1000 iterations.

Example:

MTK:11> game_model.training(10000, trace)

iteration log-likelihood likelihood

0 -6.9314718056e+02 9.3326361852e-302

1 -6.9237923384e+02 2.0114968500e-301

2 -6.9233799381e+02 2.0961853190e-301

...

998 -6.9073270968e+02 1.0437481465e-300

999 -6.9073257832e+02 1.0438852618e-300

1000 -6.9073244705e+02 1.0440222957e-300

Let’s take a look at the estimated parameters. This can be easily done using the hmm’s
display function:

Example:

11.2. GETTING STARTED 169

MTK:12> game_model.display(all)

’all’ at ’game_model’

Number of states: 2

Number of symbols: 2

Initial state distribution:

[0.00000e+00 1.00000e+00]

State transition probabilities:

[4.72127e-01 5.27873e-01]

[5.54976e-01 4.45024e-01]

Symbol observation probabilities:

[8.86456e-01 1.13544e-01]

[1.33456e-01 8.66544e-01]

Now that we have our model at hand, it is a good idea to save it in a file, so we can
use it in the future. This can be done with the save command, available to most plugins:

Example:

MTK:13> game_model.save("game_model_parameters.txt", "all")

Hmm was successfully saved in file game_model_parameters.txt.

So, its finally time to make some money! In order to accomplish this, we will try and
forecast the next outcome of the game, given the last 3, and, observing the forecasted
values, decide if it is time to bet our money, or hold off a bit more. Fortunately, the hmm

plugin has a function, called forecast, that does just that! Given some previous sample,
it calculates the probability of each symbol, in each future time step. Thus, as a result,
we will have the probability, based on our model, of showing heads or showing tails in the
next round.

Say the most recent 3 outcomes where all heads, and are stored in the recent outcome.txt
file. So, first, we load them into MTK, using a new intvalue object, and then use the
forecast function:

Example:

MTK:14> recent_obs = new intvalue()

MTK:15> recent_obs.load("recent_outcome.txt")

Intvalue was successfully loaded.

170 CHAPTER 11. MODELING TOOL KIT

MTK:16> game_model.forecast(1, recent_obs)

(Time Step 1): distribution: [4.9768404831e-01 5.0231595169e-01];

most probable symbol: 1;

entropy (in bits): 9.9998452377e-01

As we can see, given these most recent 3 observations, there is a slight bigger chance of, in
the next round, showing tails than showing heads. If you are risk tolerant, then it might
be the time to bet some money!

The hmm plugin has also another method that can be used for forecasting, called
symb sum dist, which calculates the probability distribution of the sum of the symbol’s
values emitted in a time window of size F , given some previous history. With it, we can
calculate the probability of, in the next 5 rounds, for example, showing one tail, two tails,
etc., given the 3 most recent outcomes.

Example:

MTK:17> game_model.symb_sum_dist(recent_obs, 5)

sum(Obs) P[sum(Obs) after 5 time steps]

0 3.0514042169e-02

1 1.6531242933e-01

2 3.3398035017e-01

3 3.1275828032e-01

4 1.3558484787e-01

5 2.1850050151e-02

estimated average of sum(Obs): 2.4231376128e+00

By looking at the result above, we can notice that, in the next five consecutive rounds, the
overall chances of the casino winning are better than the chances of a player winning.

This concludes our short tutorial. By now, you should feel more comfortable using
MTK, and exploring its features. In the next two sections, we describe, in details, all of
MTK’s main commands, and every available plugin.

11.3 MTK’s Main Commands

In the section, we describe the basic, plugin independent, commands of MTK.

11.3.1 Help

Displays help messages for plugins, plugin methods, or MTK commands.

11.3. MTK’S MAIN COMMANDS 171

Usage: help <keyword>

where <keyword> may be either a <plugin name>, a MTK <command name>, or a plu-
gin method, in which case, the input should be <plugin name>.<method name>.

11.3.2 List

Lists either the available plugins or the instantiated objects.

Usage: list <option>

where <option> can be either plugins, if the available plugins are to be listed, or objects
if the instantiated objects are to be listed.

11.3.3 Set

This commands serves three purposes: it activates an instantiated object; it sets the MTK’s
output terminal; and, in case the output terminal is set to a file, it can be used to specify
this file. In the following paragraphs, we, individually, describe each of these uses.

It was shown in section 11.2 that, any method, of any object, can be executed by typing,
in the command line, <object name>.<method name>(<parameters>). However, it seems
cumbersome to have to, every time, type the object’s name. So MTK allows the user to
activate an object. Whenever an object is active, its methods can be called upon by typing
only their names; the objects name, in this case, can be omitted. When there is only one
object instantiated, it will, evidently, be active at all times. But when there are two or
more objects instantiated, the user can activate one or the other by using the set command.

Besides activating objects, set can be used to set MTK’s output terminal, to either the
screen or a file. If the terminal is set to ’file’, then this command can be used, again, to
specify the name of the file. This feature allows the user to save the desired outputs of his
experiment, in order to study them later, or in a more careful way.

Usage: set <attribute> <value>

where <attribute> can be either active, in which case <value> should be the name of the
object to be activated; terminal, in which case <value> should be either file or screen;
or output, if terminal is set to ’file’, in which case <value> should be the name (or path)
of the destination file.

172 CHAPTER 11. MODELING TOOL KIT

11.3.4 Show

Shows the value of any MTK attribute. These attributes are those set with the set com-
mand, whose purposes where explained above.

Usage: show <attribute>

where <attribute> can be either active, terminal, output, or version, in which case
MTK’s version number is printed on screen.

11.3.5 Quit

Quits the MTK’s session. This can also be done typing Ctrl+d.

Usage: quit

11.4 Creating and Deleting Objects

As was said in section 11.2.4, each plugin is a blueprint from which objects are created.
There is no limit on the number of objects that can be instantiated, during the same
session, from the same plugin. This allows the user to work with several instances of the
same model, but with different parameters, and compare their results, when applied to the
same problem.

Any object, on MTK, can be created with the new command:

Usage: <object name> = new <plugin name>(<parameters>)

where <object name> is the name given to the object; <plugin name> is the name of
the plugin from which the object will be created; <parameters> are the parameters re-
quested by each plugin, which can be found on the plugin’s help message.

Deleting an object is even easier than creating it. To delete any object, on MTK, just
use the delete command:

Usage: delete <object name>

where <object name> is the name of the object to be deleted.

11.5 Available Plugins

A plugin is a blueprint from which objects are created, just like a class in the object
oriented paradigm. It is composed of attributes, displays and methods. The attributes

11.5. AVAILABLE PLUGINS 173

describe the characteristics of a plugin, and thus, each attribute usually represents some
specific parameter. The displays shows, on screen, the values of each attribute. Finally,
a method is a group of actions that are executed to some specific purpose, like generating
forecasts, or estimating parameters.

In this section we describe, individually, and in details, the currently implemented
plugins. Our approach intends to be complete, but not exhaustive. For any additional
information, the user is advised to use the help command, available to each plugin.

In order to make our exposure as comprehensible as possible, we have decided to sepa-
rate the plugins into two main categories, according to their use: data manipulation plugins
and mathematical model plugins.

Data Manipulation Plugins

The following plugins allow the user to manipulate data samples, and can be used to store
the results produced by some of the other plugin’s methods.

11.5.1 Intvalue Plugin

The intvalue plugin implements an array of integer value elements. It behaves, essentially,
like an ordinary array of elements, in which every integer is stored in a specific position,
and is assigned a unique subscript. It is commonly used to handle data traces, and can be
used as the input or output parameter for other plugin’s methods.

Constructors

This plugin has two different constructors:

intvalue()

intvalue(<file name>)

where the first one creates an empty array, and the second, an array whose elements
are loaded from the <file name> file.

Attributes

1. lower: Specifies a lower bound for the elements.

2. upper: Specifies an upper bound for the elements.

3. size: Specifies the array’s size.

4. data[i]: Returns the i-th element of the array.

174 CHAPTER 11. MODELING TOOL KIT

Displays

1. sample: Prints all the elements of the array.

2. bounds: Prints the array’s lower and upper bounds.

3. stats: Prints the following statistics of the array: minimum value, maximum value,
mean and variance.

Methods

11.5.1.1 Load

Loads a set of elements from a file.

Usages: load(<file name>)
: load(<file name>, <offset> [, <size >])

where <file name> is the name of the file from which the elements are loaded; <offset> is
the number of elements to skip, from the file, before loading; and [, <size>] is an optional
parameter, which specifies the number of elements to be loaded.

11.5.1.2 Save

Saves the elements of the intvalue array in a file.

Usages: save(<file name>)
: save(<file name>, <offset> [, <size >])

where <file name> is the name of the file into which the elements are saved; <offset>
is the number of elements to skip, from the intvalue array, before saving; and [, <size>]
is an optional parameter, which specifies the number of elements to be saved.

11.5.1.3 Truncate

Truncates the elements of the the intvalue array between two values.

Usage: truncate(<lower>, <upper>)

where <lower> is the lower bound to which smaller elements are truncated, and <upper>
is the upper bound to which bigger elements are truncated.

11.5. AVAILABLE PLUGINS 175

11.5.1.4 Autocorrelation

Calculates the autocorrelation of the elements from the intvalue array.

Usage: autocorrelation(<lag> [,<start>])

where <lag> is the maximum autocorrelation lag that will be computed and [,<start>]
is an optional parameter that specifies the position, in the intvalue array, from which to
start calculating the autocorrelation. If this parameter is not specified, the calculation will
start from the beginning of the array.

Input and Output File Format

Every file read (written) by the intvalue plugin must be in the following format: the first
line contains the number of elements in the file, and each subsequent line contains one, and
only one, element.

Example:

5

0

1

0

1

0

11.5.2 Floatvalue Plugin

The floatvalue plugin implements an array of floating point elements. It behaves, essen-
tially, like an ordinary array of elements, in which every float is stored in a specific position,
and is assigned a unique subscript. It is commonly used to handle data traces, and can be
used as the input or output parameter for other plugin’s methods.

Constructors

This plugin has two different constructors:

floatvalue()

floatvalue(<file name>)

where the first one creates an empty array, and the second, an array whose elements
are loaded from the <file name> file.

176 CHAPTER 11. MODELING TOOL KIT

Attributes

1. lower: Specifies a lower bound for the elements.

2. upper: Specifies an upper bound for the elements.

3. max bound: Specifies the maximum absolut value that an element may have. Thus,
the element’s value range is [−max bound,max bound].

4. size: Specifies the array’s size.

5. data[i]: Returns the i-th element of the array.

Displays

1. sample: Prints all the elements of the array.

2. bounds: Prints the array’s lower and upper bounds.

3. stats: Prints the following statistics of the array: minimum value, maximum value,
mean and variance.

Methods

11.5.2.1 Load

Loads a set of elements from a file.

Usages: load(<file name>)
: load(<file name>, <offset> [, <size >])

where <file name> is the name of the file from which the elements are loaded; <offset> is
the number of elements to skip, from the file, before loading; and [, <size>] is an optional
parameter, which specifies the number of elements to be loaded.

11.5.2.2 Save

Saves the elements of the floatvalue array in a file.

Usages: save(<file name>)
: save(<file name>, <offset> [, <size >])

where <file name> is the name of the file into which the elements are saved; <offset> is
the number of elements to skip, from the floatvalue array, before saving; and [, <size>]
is an optional parameter, which specifies the number of elements to be saved.

11.5. AVAILABLE PLUGINS 177

11.5.2.3 Truncate

Truncates the elements of the the floatvalue array between two values.

Usage: truncate(<lower>, <upper>)

where <lower> is the lower bound to which smaller elements are truncated, and <upper>
is the upper bound to which bigger elements are truncated.

11.5.2.4 Autocorrelation

Calculates the autocorrelation of the elements from the floatvalue array.

Usage: autocorrelation(<lag> [,<start>])

where <lag> is the maximum autocorrelation lag that will be computed; and [,<start>]
is an optional parameter that specifies the position, in the floatvalue array, from which
to start calculating the autocorrelation. If this parameter is not specified, the calculation
will start from the beginning of the array.

Input and Output File Format

Every file read (written) by the floatvalue plugin must be in the following format: the
first line contains the number of elements in the file, and each subsequent line contains
one, and only one, element.

Example:

5

0.6

1.0

0.3

1.2

0.1

Mathematical Model Plugins

The following plugins allow users to work with several, distinct, mathematical models. Each
one implements a specific model, and supplies the user with various algorithms associated
with it. Next, we describe, individually, each of these plugins.

178 CHAPTER 11. MODELING TOOL KIT

11.5.3 Hidden Markov Model Plugin

The Hidden Markov Model plugin implements a discrete-time, discrete-space hidden Markov
model (HMM)[39]. Its allows users to build a HMM, estimate its parameters (given some
observation sample), produce forecasts, etc. Its basic code was implemented during the
work [24] and, later, was adapted to the MTK paradigm by [44].

Constructors

The hmm plugin has two different constructors:

hmm()

hmm(<N>, <M>)

where the first one creates an empty hidden Markov model with 0 states and 0 obser-
vation symbols (it assumes its parameters will be loaded hereafter); and the second one
creates a HMM with <N> hidden states and <M> observation symbols, and initializes its
parameters with random values, satisfying the stochastic constrains. Each of the N states
is associated with a unique integer number, ranging from 0 to N − 1, which identifies the
state. The same is true for the observation symbols. Each of the M symbols is represented
by a unique integer number, whose value can range from 0 to M − 1.

Attributes

1. N: Number of hidden states.

2. M: Number of observation symbols.

3. pi[i]: Initial probability of the i-th hidden state.

4. A[i][j]: Transition probability from hidden state i to hidden state j.

5. B[i][j]: Probability of symbol j at hidden state i.

6. result[i]: Resulting array of last executed method.

Displays

1. all: Prints all model parameters.

2. pi: Prints only the initial hidden state distribution.

3. A: Prints only the hidden state transition matrix.

4. B: Prints only the symbol emission probability matrix.

11.5. AVAILABLE PLUGINS 179

Methods

11.5.3.1 Load

Loads a model description (its parameters) from a file.

Usage: load(<file name> [, <attribute>])

where <file name> is the name of the file from which the description is loaded; and
<attribute> is an optional parameter, which allows users to load only one specific pa-
rameter. It may be {pi, A, B, all}, if the parameter that is to be loaded is pi, A, B, or all
of the previous, respectively.

Warning: When loading only specific parameters, like A, make sure that the file from
which it will be loaded has only that parameter stored in it, and is in the format specified
at the end of this section.

11.5.3.2 Save

Saves a model description (its parameters) to a file.

Usage: save(<file name> [, <attribute>])

where <file name> is the name of the file into which the description will be saved; and
<attribute> is an optional parameter, which allows users to save only one specific param-
eter. It may be {pi, A, B, all}, if the parameter that is to be saved is pi, A, B, or all of
the previous, respectively.

11.5.3.3 Normalize

Normalizes the model’s parameters to satisfy the stochastic constrains. The normalization
is done by dividing every element of a probability vector by the sum of the elements of this
vector.

Usage: normalize()

11.5.3.4 Model Parameter Estimation

Estimates the HMM’s parameters by maximizing the likelihood of a given observation
sample. In case this sample is composed of incomplete data (observations only) the Baum-
Welch algorithm[5] is used. Multiple observation samples may also be used.

Usages: training(<it> [,<thr>], <object 1> [, ...])

180 CHAPTER 11. MODELING TOOL KIT

: training(<object 1>, <object 2>)

where <it> is the maximum number of iterations that the Baum-Welch algorithm will
perform before stopping; <thr> is the log-likelihood gain3 threshold that, when reached,
will stop the estimation algorithm; <object 1> is the MTK object containing the observa-
tion sample; and <object 2> is the MTK object containing the state path that generated
the observations in <object 1>.

Output: Shows the progress of the estimation, by printing the current iteration and
the likelihood of the observation sample used in the training, given the current parameter
estimates. The values estimated for the parameters are automatically stored in the hmm

object’s attributes.

11.5.3.5 Likelihood

Calculates and displays the probability that a given observation sample was generated by
the current model parameters.

Usage: likelihood(<object 1> [,<object 2>])

where <object 1> is the MTK object containing the observation sample; and <object 2>,
an optional parameter, is the MTK object containing the state path that generated the
observations.

Output: Prints both the likelihood and the log-likelihood of the observation sample in
<object 1>.

11.5.3.6 Viterbi

Implements the Viterbi algorithm[39]. Given an observation sample, determines the se-
quence of hidden states, known as state path, that is most likely to have generated it.

Usage: viterbi(<object 1> ,<object 2>)

where <object 1> is the MTK object containing the observation sample; and <object 2>
is the MTK object used to store the state path evaluated.

Output: Prints the initial and the last state of the state sequence determined, and the
log-likelihood (under the name Score) that the observation sample was generated by that

3By log-likelihood gain we mean the difference between the log-likelihood in iteration i and iteration
i− 1.

11.5. AVAILABLE PLUGINS 181

particular sequence of states. As mentioned above, the complete state path is stored in
<object 2>.

11.5.3.7 Simulate

Generates a random sample path from the model.

Usage: simulate(<sample size>, <object 1> [,<object 2>])

where <sample size> is number of samples that will be generated; <object 1> is the MTK
object used to store the observations generated; and [<object 2>], an optional parame-
ter, is the MTK object used to store the state path from which the observations where
generated.

11.5.3.8 Forecast

Calculates and displays the symbol’s probability distribution at each time unit, in a fore-
casting time interval, given some previous observation history.

Usage: forecast(<F>, <object 1> [,<object 2>])

where <F> is the size, in time units, of the forecasting time interval; <object 1> is the
MTK object containing the observation history; and [<object 2>], an optional parameter,
is the MTK object used to store the most likely symbol of each distribution of each time
unit.

Output: Prints, for each time unit, its symbol probability distribution, the most probable
symbol of this distribution, and the entropy[8], in bits, of the distribution.

11.5.3.9 Symbol Value Time Average

Recall that each symbol in the HMM is represented by a unique integer-valued number.
This method assumes the system is in steady state, and calculates the long term time
average (when t → ∞) of the values of the emitted symbols. In other words, it calculates
the expected symbol value that will be observed in one symbol emission.

Usages: symb tavg()

Output: Prints the symbol’s average value emitted, over time, when t → ∞.

182 CHAPTER 11. MODELING TOOL KIT

11.5.3.10 Symbol Value Sum Distribution

Given a time window of size F , and an observation history H, calculates and displays the
distribution of the sum of the emitted symbol’s values, in F , given H. That is, it evaluates

P
[

∑t=F
t=1 Ot|H

]

for every possible sum O1 +O2 + · · ·+OF . Evidently, this method assumes

the symbols can be added one to another.

Note: To clarify things, let’s look at an example. Suppose you are working with a model
which has only two symbols, whose values are 0 and 1. In a time interval of F = 2 time
units, the possible symbol outcomes are {(0, 0), (0, 1), (1, 0), (1, 1)}. Thus, there are three
possibilities for the sum of values of the symbols emitted: {0, 1, 2}. The symb sum dist()

method will calculate the probability of each of these three outcomes.

Usages: symb sum dist(<object src>, <F>)

where <object src> is the MTK object that containing the observation history; and <F>
is the size, in time units, of the time interval considered.

Output: Prints all possible symbol sum values with their respective probability, and
their average value calculated from this distribution.

11.5.3.11 State Probability

Evaluates, for each hidden state, the probability of finding the system in that hidden state,
i.e., evaluates the hidden states probability distribution. If no parameters are passed, it
calculates the steady state probability distribution. If an observation sample is passed as
parameter, it calculates the probabilities based on this history sample, thus assuming the
model is in transient state.

Usages: state prob()

: state prob(<object src>)

where <object src> is the MTK object that containing the observation sample.

Output: Prints the probability of each hidden state.

11.5.3.12 Set Full Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission proba-
bility matrix, B, and the initial hidden state probability vector, pi, satisfying the stochastic
constrains.

11.5. AVAILABLE PLUGINS 183

Usage: set full(<N>, <M>)

where <N> is the number of hidden states; and <M> is the number of observation symbols
of the hmm model.

11.5.3.13 Set Coxian Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission
probability matrix, B, and the initial state probability vector, pi, satisfying the stochastic
constrains, but sets the Markov chain to a coxian structure.

Usage: set coxian(<N>, <M>)

where <N> is the number of hidden states; and <M> is the number of observation symbols
of the hmm model.

11.5.3.14 Set Quasi Birth-Death Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission
probability matrix, B, and the initial state probability vector, pi, satisfying the stochastic
constrains, but sets the Markov chain to a quasi birth-death structure.

Usage: set qbd(<G>, <E>, <M> [, <BACK> [, <FWD>]])

where <G> in the number of groups of states; <E> in the number of states (elements)
per group4; <M> is the number of symbols; <BACK> is the number of reachable back
groups; and <FWD> is the number of reachable forward groups.

11.5.3.15 Set Gilbert Structure

Transforms the hmm object into a Gilbert HMM model[28, 26], no matter what previous
structure the object had.

Usage: set gilbert()

11.5.3.16 Fix Full Structure

Adds the value epsilon, which is defined in section 11.5.3.20, to every element of the hid-
den state transition matrix, A, the symbol emission probability matrix, B, and the initial
hidden state probability vector, pi, and normalizes them to satisfy the stochastic con-
strains. This method can be used as an easy way of changing any parameter whose value

4
N = G · E

184 CHAPTER 11. MODELING TOOL KIT

might have been set to zero (by a parameter estimation, for example) and setting it to a
really small value.

Usage: fix full(<N>, <M>)

where <N> is the number of hidden states; and <M> is the number of observation symbols
of the hmm model.

11.5.3.17 Fix Coxian Structure

Assuming that the hidden states form a coxian structure, adds the value epsilon, which
is defined in section 11.5.3.20, to every element of the hidden state transition matrix, A,
the symbol emission probability matrix, B, and the initial hidden state probability vector,
pi, and normalizes them to satisfy the stochastic constrains.

Usage: fix coxian(<N>, <M>)

where <N> is the number of hidden states; and <M> is the number of observation symbols
of the hmm model.

11.5.3.18 Fix Quasi Birth-Death Structure

Assuming that the hidden states form a quasi birth-death structure, adds the value epsilon,
which is defined in section 11.5.3.20, to every element of the hidden state transition ma-
trix, A, the symbol emission probability matrix, B, and the initial hidden state probability
vector, pi, and normalizes them to satisfy the stochastic constrains.

Usage: fix qbd(<G>, <E>, <M> [, <BACK> [, <FWD>]])

where <G> in the number of groups of states; <E> in the number of states (elements)
per group5; <M> is the number of symbols; <BACK> is the number of reachable back
groups; and <FWD> is the number of reachable forward groups.

11.5.3.19 Fix Gilbert Structure

Assuming that the hidden states form a Gilbert structure, adds the value epsilon, which
is defined in section 11.5.3.20, to every element of the hidden state transition matrix, A,
the symbol emission probability matrix, B, and the initial hidden state probability vector,
pi, and normalizes them to satisfy the stochastic constrains.

5
N = G · E

11.5. AVAILABLE PLUGINS 185

Usage: fix gilbert()

11.5.3.20 Set Error Tolerance Value - Epsilon

Sets the objects error tolerance value, epsilon. Default value is 0.00001.

Usage: fix gilbert(<float value>)

where <float value> is the desired error tolerance value.

11.5.3.21 Import From Tangram-II

Imports a Markov chain structure from a Tangram-II model. This method is further de-
scribed in section 8.2.

Usage: import from tangram(<obj name>, <num hidden vars>, <system variable list>)

where <obj name> is the tangram-II model’s description file (the .obj file); <num hidden vars>
is the number of system states which represent the hidden states; and <system variable list>
is a comma separated list with the Tangram-II’s model variable names, in the format ’Ob-
ject.StateVariable’. This list must have <num hidden vars> elements

Input and Output File Format

Every file read (written) by the hmm plugin must be in the following format:

< N >
< M >

< pi(N×1) >

< A(N×N) >

< B(N×M) >

where <N>, <M>, <pi>, <A> and are the hmm attributes specified previously.

Example:

2

3

186 CHAPTER 11. MODELING TOOL KIT

1.0

0.0

0.3 0.7

0.5 0.5

0.2 0.2 0.6

0.3 0.6 0.1

Note: The load and save methods can, as previously described, load/save specific at-
tribute descriptions. In this case, the file which is read/written by these methods should
have the same format described above, but include only the specific attribute which is
being loaded/saved, i.e, the other attributes should be omitted from the file.

11.5.4 Hierarchical Gilbert Hidden Markov Model Plugin

The Hierarchical Gilbert Hidden Markov Model (GHMM) plugin defines a discrete-time,
0-1 observation, hierarchical HMM[44], in which a Markov chain (in this case, a gilbert
model) is associated with each hidden state, and is responsible for the symbol emissions.
Figure 11.3 illustrates the structure of such a two-level hierarchical model. After each

0 1 0 01 1

Figure 11.3: Example of a hierarchical HMM with 3 hidden states, in which a Gilbert
Markov chain is associated with each hidden state.

transition (Si, Sj) in the the hidden chain (the upper-level in this two-level hierarchy), the
lower-level model associated with Sj emits symbols by transiting for a determined number
of steps, called a batch, before the upper-level chain makes another transition6. A symbol

6The initial state in the lower-level chain is chosen according to a initial state probability distribution
associated with this lower-level Markov chain. Keep in mind that after every transition in the upper-level

11.5. AVAILABLE PLUGINS 187

is emitted every time the lower-level Markov chain makes one transition, thus reaching
one of its states. In case this lower-level chain is a gilbert model, as is the case in this
plugin, symbol 0 is emitted every time the lower-level state I0 is reached, and symbol 1 is
emitted every time the lower-level state I1 is reached, where Ik, with k = {0, 1}, defines
a lower-level state. Each lower-level state emits one, and only one, symbol, and different
lower-level states, inside a same hidden state, cannot both emit the same symbol. This
plugin is a contribution of [44].

Constructors

The ghmm plugin has two different constructors:

ghmm()

ghmm(<N>,)

where the first one creates an empty hierarchical gilbert hidden Markov model (it as-
sumes its parameters will be loaded hereafter); and the second one creates a GHMM with
<N> hidden states, whose observation batch size is , and initializes its parameters
with random values, satisfying the stochastic constrains. Each of the N states is associated
with a unique integer number, ranging from 0 to N − 1, which identifies the state. The
observations emitted by the model are either 0 or 1.

Attributes

1. N: Number of hidden states.

2. B: Observation batch size.

3. pi[i]: Initial probability of the i-th hidden state.

4. A[i][j]: Transition probability from hidden state i to hidden state j.

5. p[i]: Transition probability from the state associated with symbol 0 to that associ-
ated with symbol 1, in hidden state i.

6. q[i]: Transition probability from the state associated with symbol 1 to that associ-
ated with symbol 0, in hidden state i.

7. r[i]: Initial probability of the state associated with symbol 1, in hidden state i.

8. result[i]: Resulting array of last executed method.

chain, which includes transitions to the same state, a new initial lower-level state is chosen, and the symbol
emission process statrs from that state.

188 CHAPTER 11. MODELING TOOL KIT

Displays

1. all: Prints all model parameters.

2. pi: Prints only the initial hidden state distribution.

3. A: Prints only the hidden state transition matrix.

4. obs: Prints, for every hidden state, the values of the attributes p, q and r, defined
above.

Methods

11.5.4.1 Load

Loads a model description (its parameters) from a file.

Usage: load(<file name> [, <attribute>])

where <file name> is the name of the file from which the description is loaded; and
<attribute> is an optional parameter, which allows users to load only one specific pa-
rameter. It may be {pi, A, obs, all}, if the parameter that is to be loaded is pi, A, obs,
or all of the previous, respectively.

Warning: When loading only specific parameters, like A, make sure that the file from
which it will be loaded has only that parameter stored in it, and is in the format specified
at the end of his section.

11.5.4.2 Save

Saves a model description (its parameters) to a file.

Usage: save(<file name> [, <attribute>])

where <file name> is the name of the file into which the description will be saved; and
<parameter> is an optional parameter, which allows users to save only one specific pa-
rameter. It may be {all, pi, A, B}, if the parameter that is to be saved is all, pi, A or B,
respectively.

11.5.4.3 Normalize

Normalizes the model’s parameters to satisfy the stochastic constrains. The normalization
is done by dividing every element of a probability vector by the sum of the elements of this
vector.

11.5. AVAILABLE PLUGINS 189

Usage: normalize()

11.5.4.4 Model Parameter Estimation

Estimates the GHMM’s parameters by maximizing the likelihood of a given observation
sample, using a variation of the Baum-Welch algorithm[5]. The reestimation equations
used can be found in [44].

Usage: training(<it> [,<thr>], <object>)

where <it> is the maximum number of iterations that the Baum-Welch algorithm will
perform before stopping; <thr>, an optional parameter, is the log-likelihood gain7 thresh-
old that, when reached, will stop the estimation algorithm; and <object> is the MTK
object containing the observation sample.

Output: Shows the progress of the estimation, by printing the current iteration and
the likelihood of the observation sample used in the training, given the current parameter
estimates. The values estimated for the parameters are automatically stored in the ghmm

object’s attributes.

Optimized Parameter Estimation: Besides the training() method, the GHMM plu-
gin also implements another parameter estimation method, called training fast(). The
difference between both is that while the first one calculates, for each observation in the
sample, a new set of parameters for the model, the second one calculates, in a single step,
these new parameters for a hole observation batch, thus improving its estimation speed by
a factor of B[44]. The parameters taken by this method, and its output, are identical to
those of the training() method:

Usage: training fast(<it> [,<thr>], <object>)

11.5.4.5 Likelihood

Calculates and displays the probability that a given observation sample was generated by
the current model parameters.

Usage: likelihood(<object1>)

where <object> is the MTK object containing the observation sample.

7By log-likelihood gain we mean the difference between the log-likelihood in iteration i and iteration
i− 1.

190 CHAPTER 11. MODELING TOOL KIT

Output: Prints both the likelihood and the log-likelihood of the observation sample in
<object>.

Optimized Likelihood Calculation: As the training method, the likelihood method
has an optimized version, which works, basically in the same way as training fast.

Usage: likelihood fast(<object1>)

11.5.4.6 Viterbi

Implements the Viterbi algorithm[39]. Given an observation sample, determines the se-
quence of hidden states, known as state path, that is most likely to have generated it.

Usage: viterbi(<object 1> ,<object 2>)

where <object 1> is the MTK object containing the observation sample; and <object 2>
is the MTK object used to store the state path evaluated.

Output: Prints the initial and the last state of the state sequence determined, and the
log-likelihood (under the name Score) that the observation sample was generated by that
particular sequence of states. As mentioned above, the complete state path is stored in
<object 2>.

11.5.4.7 Simulate

Generates a random sample path from the model.

Usage: simulate(<sample size>, <object 1> [,<object 2>])

where <sample size> is number of samples that will be generated; <object 1> is the MTK
object used to store the observations generated; and [<object 2>], an optional parame-
ter, is the MTK object used to store the state path from which the observations where
generated.

11.5.4.8 Symbol Value Time Average

Recall that the symbols in the GHMM are represented by either a 0 or a 1. This method
assumes the system is in steady state, and calculates the long term time average (when
t → ∞) of the values of the emitted symbols. In other words, it calculates the expected
symbol value that will be observed in one symbol emission.

11.5. AVAILABLE PLUGINS 191

Usages: symb tavg()

Output: Prints the symbol’s average value emitted, over time, when t → ∞.

11.5.4.9 Symbol Value Sum Distribution

Given a time window of size F , and an observation history H, calculates and displays the
distribution of the sum of the emitted symbols values, in F , given H. That is, it evaluates

P
[

∑t=F
t=1 Ot|H

]

for every possible sum O1 +O2 + · · ·+OF . Evidently, this method assumes

the symbols can be added one to another.

Note: To clarify things, let’s look at an example. Suppose you are working with a model
which has only two symbols, whose values are 0 and 1. In a time interval of F = 2 time
units, the possible symbol outcomes are {(0, 0), (0, 1), (1, 0), (1, 1)}. Thus, there are three
possibilities for the sum of the symbols emitted: {0, 1, 2}. The symb sum dist() method
will calculate the probability of each of these three outcomes.

Usages: symb sum dist(<object src>, <F>)

where <object src> is the MTK object that containing the observation history; and <F>
is the size, in time units, of the time interval considered.

Output: Prints all possible symbol sum values with their respective probability, and
their average value calculated from this distribution.

11.5.4.10 State Probability

Evaluates the hidden state probability distribution, be it on steady state, or, if an obser-
vation sample is passed as parameter, on transient state.

Usages: state prob()

: state prob(<object src>)

where <object src> is the MTK object that containing the observation sample.

Output: Prints the probability of each hidden state.

11.5.4.11 Set Full Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission prob-
ability vectors, p,q and r, and the initial hidden state probability vector, pi, satisfying
the stochastic constrains.

192 CHAPTER 11. MODELING TOOL KIT

Usage: set full(<N>,)

where <N> is the number of hidden states; and is the observation batch size.

11.5.4.12 Set Coxian Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission prob-
ability vectors, p,q and r, and the initial hidden state probability vector, pi, satisfying
the stochastic constrains, but sets the hidden Markov chain to a coxian structure.

Usage: set coxian(<N>,)

where <N> is the number of hidden states; and is the observation batch size.

11.5.4.13 Set Quasi Birth-Death Structure

Assigns random values for the hidden state transition matrix, A, the symbol emission prob-
ability matrices, p,q and r, and the initial state probability vector, pi, satisfying the
stochastic constrains, but sets the hidden Markov chain to a quasi birth-death structure.

Usage: set qbd(<G>, <E>, [, <BACK> [, <FWD>]])

where <G> in the number of groups of states; <E> in the number of states (elements)
per group8; is the observation batch size; <BACK> is the number of reachable back
groups; and <FWD> is the number of reachable forward groups.

11.5.4.14 Fix Full Structure

Adds the value epsilon, which is defined in section 11.5.4.17, to every element of the hid-
den state transition matrix, A, the symbol emission probability matrices, p,q and r, and
the initial hidden state probability vector, pi, and normalizes them to satisfy the stochastic
constrains. This method can be used as an easy way of changing any parameter whose
value might have been set to zero (by a parameter estimation, for example) and setting it
to a really small value.

Usage: fix full(<N>,)

where <N> is the number of hidden states; and is the observation batch size.

8
N = G · E

11.5. AVAILABLE PLUGINS 193

11.5.4.15 Fix Coxian Structure

Assuming that the hidden states form a coxian structure, adds the value epsilon, which is
defined in section 11.5.4.17, to every element of the hidden state transition matrix, A, the
symbol emission probability matrices, p,q and r, and the initial hidden state probability
vector, pi, and normalizes them to satisfy the stochastic constrains.

Usage: fix coxian(<N>,)

where <N> is the number of hidden states; and is the observation batch size.

11.5.4.16 Fix Quasi Birth-Death Structure

Assuming that the hidden states form a quasi birth-death structure, adds the value epsilon,
which is defined in section 11.5.4.17, to every element of the hidden state transition ma-
trix, A, the symbol emission probability matrices, p,q and r, and the initial hidden state
probability vector, pi, and normalizes them to satisfy the stochastic constrains.

Usage: fix qbd(<G>, <E>, [, <BACK> [, <FWD>]])

where <G> in the number of groups of states; <E> in the number of states (elements)
per group9; is the observation batch size; <BACK> is the number of reachable back
groups; and <FWD> is the number of reachable forward groups.

11.5.4.17 Set Error Tolerance Value - Epsilon

Sets the objects error tolerance value, epsilon. Default value is 0.00001. Usage: fix qbd(

<float value>)

where <float value> is the desired error tolerance value.

11.5.4.18 Import From Tangram-II

Imports a Markov chain structure from a Tangram-II model. This method is further de-
scribed in section 8.2.

Usage: import from tangram(<obj name>, <num hidden vars>, <system variable list>)

where <obj name> is the Tangram-II model’s description file (the .obj file); <num hidden vars>
is the number of system states which represent the hidden states; and <system variable list>

9
N = G · E

194 CHAPTER 11. MODELING TOOL KIT

is a comma separated list with the Tangram-II’s model variable names, in the format ’Ob-
ject.StateVariable’. This list must have <num hidden vars> elements

Input and Output File Format

Every file read (written) by the ghmm plugin must be in the following format:

< N >
< B >

< pi(N×1) >

< A(N×N) >

< obs(N×3) >; where obs[i][0] = r[i],
obs[i][1] = p[i],
obs[i][2] = q[i]

where <N>, , <pi>, <A> and <r>, <p>, <q> are the ghmm attributes specified
previously.

Example:

2

5

1.0

0.0

0.3 0.7

0.5 0.5

0.8 0.1 0.5

0.9 0.6 1.0

Note: The load and save methods can, as previously described, load/save specific at-
tribute descriptions. In this case, the file which is read/written by these methods should
have the same format described above, but include only the specific attribute which is
being loaded/saved, i.e, the other attributes should be omitted from the file.

11.5. AVAILABLE PLUGINS 195

11.5.5 Hierarchical General Hidden Markov Model Plugin - Fixed Batch

The Hierarchical General Hidden Markov Model - Fixed Batch (HMM-Batch) plugin is
a generalized version of the GHMM one, and was implemented during the work of [46].
Inside each state, instead of a simple Gilbert model, the user can define a general Markov
chain, which, as in the case of the GHMM, is responsible for the symbol emissions. Figure
11.4 illustrates the structure of such a hierarchical model. After each transition (Si, Sj) in

0

1

2

3

0

1

2

3

Figure 11.4: Example of a hierarchical general HMM with 2 hidden states and 4 observation
symbols.

the the hidden chain (the upper-level one), the lower-level model associated with Sj emits
symbols by transiting for a fixed number of steps, called a batch, before the upper-level
chain makes another transition10. Every time the lower-level Markov chain makes one
transition, thus reaching one of its states, the model emits one symbol, which is the one
associated with the lower-level state just reached. Hence, symbol k is emitted every time
the lower-level state Ik is reached, where Ik, with k = {0, . . . ,M − 1}, defines a lower-level
state inside the hidden state Sj. Each lower-level state emits one, and only one, symbol,
and different lower-level states, inside a same hidden state, cannot both emit the same
symbol.

10The initial state in the lower-level chain is chosen according to a initial state probability distribution
associated with this lower-level Markov chain. Keep in mind that after every transition in the upper-level
chain, which includes transitions to the same state, a new initial lower-level state is chosen, and the symbol
emission process statrs from that state.

196 CHAPTER 11. MODELING TOOL KIT

Constructors

The hmm batch plugin has two different constructors:

hmm batch()

hmm batch(<N>, <M>,)

where the first one creates an empty hierarchical general hidden Markov model (it assumes
its parameters will be loaded hereafter); and the second one creates a HMM-Batch with
<N> hidden states, <M> observation symbols, whose observation batch size is , and
initializes its parameters with random values, satisfying the stochastic constrains. Each of
the N states is associated with a unique integer number, ranging from 0 to N − 1, which
identifies the state. The observations symbols, emitted by the model, range from 0 to
M−1, and each lower-level state, inside a hidden state Sj , is associated with one, and only
one, symbol.

Attributes

1. N: Number of hidden states.

2. M: Number of observation symbols.

3. B: Observation batch size.

4. pi[i]: Initial probability of the i-th hidden state.

5. A[i][j]: Transition probability from hidden state i to hidden state j.

6. p[i][j][k]: Transition probability of symbol j to symbol k in hidden state i.

7. r[i][j]: Initial probability of symbol j in hidden state i.

Displays

1. all: Prints all model parameters.

2. pi: Prints only the initial hidden state distribution.

3. A: Prints only the hidden state transition matrix.

4. obs: Prints, for every hidden state, the values of the attributes p and r, defined
above.

11.5. AVAILABLE PLUGINS 197

Methods

The methods of the HMM-Batch plugin are identical to those of the GHMM one, with the
exception of the symb tavg and symb sum dist methods, which are not implemented in
this plugin. For this reason, we will not describe them here; the user who wishes to obtain
more information on any of its methods is advised to use MTK’s help command, or read
section 11.5.4 of this manual.

Input and Output File Format

Every file read (written) by the hmm batch plugin must be in the following format:

< N >
< M >
< B >

< pi(N×1) >

< A(N×N) >

< obs(N×(M+(M ·M)−1)) >; where obs[i][j] = r[i][j], for 0 ≤ j < M ;
obs[i][M] = p[i][0][0];
obs[i][M + 1] = p[i][0][1];
· · ·
obs[i][M + (M − 1)] = p[i][0][M − 1];
obs[i][M + M] = p[i][1][0];
· · ·
obs[i][M + (M ·M) − 1] = p[i][M − 1][M − 1];

where <N>, <M>, , <pi>, <A> and <r>, <p> are the hmm batch attributes spec-
ified previously.

Example:

2

3

5

1.0

0.0

198 CHAPTER 11. MODELING TOOL KIT

0.3 0.7

0.5 0.5

r[i][j] ## p[i][0][k] ## p[i][1][k] ## p[i][2][k]

0.1 0.1 0.8 0.2 0.2 0.6 0.9 0.1 0.0 0.4 0.4 0.2

0.5 0.0 0.5 0.8 0.0 0.2 0.3 0.3 0.4 0.7 0.2 0.1

Note: The load and save methods can, as previously described, load/save specific at-
tribute descriptions. In this case, the file which is read/written by these methods should
have the same format described above, but include only the specific attribute which is
being loaded/saved, i.e, the other attributes should be omitted from the file.

11.5.6 Hierarchical General Hidden Markov Model Plugin - Variable
Batch

The Hierarchical General Hidden Markov Model - Variable Batch (HMM-VarBatch) plugin
is a generalized version of the HMM-Batch one, and was implemented during the work of
[46]. Inside each hidden state, the user defines a general Markov chain with an absorbing
state, which is responsible for the symbol emissions. Figure 11.5 illustrates the struc-
ture of such a hierarchical model. After each transition (Si, Sj) in the the hidden chain

0

1

2

3

0

1

2

3

Figure 11.5: Example of a hierarchical general HMM with variable batch size, 2 hidden
states and 4 observation symbols. Notice the absorbing state, which is identified by the
dashed dark circle.

11.5. AVAILABLE PLUGINS 199

(the upper-level one), the lower-level model associated with Sj emits symbols by transit-
ing through its states, until it reaches the absorbing state, which, then, causes the
upper-level chain to make another transition11. Every time the lower-level Markov chain
makes one transition, thus reaching one of its states, the model emits one symbol, which
is the one associated with the lower-level state just reached. Hence, symbol k is emitted
every time the lower-level state Ik is reached, where Ik, with k = {0, . . . ,M − 1}, defines
a lower-level state inside the hidden state Sj. Each lower-level state emits one, and only
one, symbol, and different lower-level states, inside a same hidden state, cannot both emit
the same symbol.

Important: It is crucial to keep in mind that the absorbing state also emits one symbol,
which we call the end of batch symbol. This symbol is part of the observation symbols,
just like every other, and, thus, must be part of the observations collected. All trace files
used with this plugin must end with this symbol, since it represents the end of a batch of
observations within some hidden state.

Constructors

The hmm batch variable plugin has two different constructors:

hmm batch variable()

hmm batch variable(<N>, <M>)

where the first one creates an empty hierarchical general hidden Markov model (it as-
sumes its parameters will be loaded hereafter); and the second creates a HMM-VarBatch
with <N> hidden states and <M> observation symbols, and initializes its parameters with
random values, satisfying the stochastic constrains. MTK always assumes that the last
symbol, i.e., the (M −1)-th symbol, is the end-of-batch symbol. Don’t forget this! Each of
the N states is associated with a unique integer number, ranging from 0 to N − 1, which
identifies the state. The observations symbols, emitted by the model, range from 0 to
M − 1, and each lower-level state is associated with one, and only one, symbol. As said
previously, the symbol M − 1 will always be the end-of-batch symbol.

Attributes

1. N: Number of hidden states.

2. M: Number of observation symbols.

11The initial state in the lower-level chain is chosen according to a initial state probability distribution
associated with this lower-level Markov chain. Keep in mind that after every transition in the upper-level
chain, which includes transitions to the same state, a new initial lower-level state is chosen, and the symbol
emission process statrs from that state.

200 CHAPTER 11. MODELING TOOL KIT

3. pi[i]: Initial probability of the i-th hidden state.

4. A[i][j]: Transition probability from hidden state i to hidden state j.

5. p[i][j][k]: Transition probability of symbol j to symbol k in hidden state i.

6. r[i][j]: Initial probability of symbol j in hidden state i.

Displays

1. all: Prints all model parameters.

2. pi: Prints only the initial hidden state distribution.

3. A: Prints only the hidden state transition matrix.

4. obs: Prints, for every hidden state, the values of the attributes p and r, defined
above.

Methods

The methods of the HMM-VarBatch plugin are identical to those of the HMM-Batch one.
For this reason, we will not describe them here; the user who wishes to obtain more
information on any of its methods is advised to use MTK’s help command, or read the
HMM-Batch section of this manual.

Input and Output File Format

The hmm batch variable plugin file format is identical to the hmm batch format, excluding
only, obviously, the batch size specification:

Example:

2

3

1.0

0.0

0.3 0.7

0.5 0.5

r[i][j] ## p[i][0][k] ## p[i][1][k] ## p[i][2][k]

0.1 0.1 0.8 0.2 0.2 0.6 0.9 0.1 0.0 0.0 0.0 0.0

0.5 0.0 0.5 0.8 0.1 0.1 0.3 0.3 0.4 0.0 0.0 0.0

11.6. CREATING YOUR OWN PLUGIN 201

Note: The load and save methods can, as previously described, load/save specific at-
tribute descriptions. In this case, the file which is read/written by these methods should
have the same format described above, but include only the specific attribute which is
being loaded/saved, i.e, the other attributes should be omitted from the file.

11.6 Creating Your Own Plugin

The MTK distribution comes with an example plugin12, which implements a sum of two
integer parameters. You can start creating your own new MTK plugin from this template
class.

All plugins are created using a single template class, called ObjectBase. In order to
implement a new plugin, take the following steps:

i) Copy the example directory (and all its files) to a new one, whose name will be identical
to that you will choose for your new plugin.

ii) Replace the Example class name inside the implementation and its header files with
the name of your new plugin;

iii) Define the attributes of your new plugin;

iv) Write plugin constructors, set and get methods, displays and methods;

v) Write plugin help messages, defined in the header file;

vi) Use addConstructor, addOption, addDisplay, and addCommand methods, inherited
from ObjectBase, to register plugin information into the MTK framework.

And you’re done! It is as simple as that!

11.7 Integration with TANGRAM-II

Up to now, we have shown how the MTK tool can be used as a standalone application.
However, recently, MTK was incorporated into TANGRAM-II. As a result of this incorpo-
ration, it is now possible to use MTK’s plugins in a Tangram-II simulation. In this section,
we describe, in details, how MTK can be used inside TANGRAM-II.

11.7.1 Using MTK in a Tangram-II Simulation

When creating a model in TANGRAM-II, it is imperative to define the events that char-
acterize the system that is being modeled, and the actions that take place whenever these

12Which can be found in the $MTK HOME/plugins directory.

202 CHAPTER 11. MODELING TOOL KIT

events occurs. With MTK’s integration with TANGRAM-II, it is now possible to, inside
these events, work with MTK’s plugin methods, as if they where just another action taking
place inside the event. Therefore, when simulating a system, users can now, for example,
collect and save traces obtained during the simulation, or use custom models (implemented
as MTK plugins) to analyze the system during its simulation in TANGRAM-II.

TANGRAM-II views MTK as a black box, from which it can interact only through its
plugin’s attributes and methods. To achieve this, a new Tangram-II type, called MTKObject,
was created. Each MTK object, that will be used in a Tangram-II model, will be viewed
by TANGRAM-II as a variable of this type, and must be declared in Declaration section,
just like any other variable in TANGRAM-II. Once created, the manipulation of these
objects can be done through six primitives, listed below, in any point of the action code of
a message or event. Through these primitives, users can access the object’s attributes and
execute their methods.

Each of these primitives is translated into the user code.c file as a set of commands,
which perform the communication between the Tangram-II simulator and the libmtk li-
brary, in order to execute the requested MTK actions during the simulation. Next, we
describe, individually, each of the six primitives.

TangramII-MTK primitives

The following primitives are used to manipulate the MTK objects. Only through them,
can the users access the object’s attributes and execute their methods.

11.7.1.1 mtk create: Creates Objects

This primitive creates a MTK object. By declaring a MTKObject variable, all you are doing
is saying to TANGRAM-II that this variable will represent a MTK object; but nothing is
being said about the object’s class (if it is a hmm object, an intvalue object, etc.). To
actually create the object, you must use the mtk create primitive.

Usage: mtk create(<mtk object name>, "<plugin name>"[, <args list>])

where <mtk object name> is the name given to the MTKObject variable, by the user, in
the Declaration section; "<plugin name>" (must be between quote marks!) is the plugin
name from which the object will be created, i.e., the plugin that this object correspond to;
and [, <args list>] is the set of parameters taken by the newly created object.

Example: Creating a HMM object

Declaration=

Const

...

11.7. INTEGRATION WITH TANGRAM-II 203

Var

MTKObject : Predictor;

...

Events=

event = event(TIME)

condition = (TRUE)

action =

{

...

mtk_create(Predictor, "hmm", NUM_STATES, NUM_SYMBOLS);

...

};

11.7.1.2 mtk run: Executes Objects Methods

This primitive allows the user to execute a method from a MTKObject.

Usage: mtk run(<mtk object name>, " <method name>" [, <args list>])

where <mtk object name> is the name given to the MTKObject variable, by the user, in the
Declaration section; "<method name>" (must be between quote marks!) is the name of
the method to be executed; and [, <args list>] is the set of parameters taken by the method.

Example: Training the HMM

Events=

event = event(TIME)

condition = (TRUE)

action =

{

...

mtk_run(Predictor, "training", TRAINING_ITERATIONS, TRACE_OBSERVATIONS);

...

};

11.7.1.3 mtk get: Gets Object Attribute Value

Gets the value of an attribute from a MTKObject, and stores it in a Tangram-II variable.
With it, users can acquire and store, in a Tangram-II variable, any parameter value (at-
tribute) or output of a MTKObject.

204 CHAPTER 11. MODELING TOOL KIT

Usage: mtk get(<tangram2 dest variable>, <mtk object name>,
<object attribute> [,<index list>])

where <tangram2 dest variable> specifies the Tangram-II’s destination variable, in which
the attribute value will be stored; <mtk object name> specifies the object’s name, from
which we will get the attribute; <object attribute> specifies the object’s attribute whose
value we are interested in; and [,<index list>] specifies the position of the attribute (if the
attribute happens to be a vector, or matrix) in which we are interested in.

Example: Acquiring the new PI values, after a HMM training

Events=

event = event(TIME)

condition = (TRUE)

action =

{

float param_PI[2];

...

/* Training the HMM */

mtk_run(Predictor, "training", TRAINING_ITERATIONS, TRACE_OBSERVATIONS);

/* Acquiring new PI values */

mtk_get(param_PI[0], Predictor, "pi", 0);

mtk_get(param_PI[1], Predictor, "pi", 1);

...

};

11.7.1.4 mtk set: Sets Object Attribute Value

It is, essentially, the opposite of the mtk get primitive. It allows the user to change the
value of a MTKObject’s attribute, setting it to a specific value.

Usage: mtk set(<tangram2 source variable>, <mtk object name>,
<object attribute> [,<index list>])

where <tangram2 source variable> specifies the Tangram-II variable that holds the new
value; <mtk object name> is the MTKObject whose attribute will be changed; <object attribute>
the attribute’s name; and [,<index list>] specifies the position of the attribute (if the at-
tribute happens to be a vector, or matrix) whose value will change.

Example: Changing the HMM’s initial state probability vector (PI).

11.7. INTEGRATION WITH TANGRAM-II 205

Events=

event = event(TIME)

condition = (TRUE)

action =

{

float new_PI[2];

...

new_PI[0] = 0.5;

new_PI[1] = 0.5;

...

/* Changing PI values */

mtk_set(new_PI[0], Predictor, "pi", 0);

mtk_set(new_PI[1], Predictor, "pi", 1);

...

};

11.7.1.5 mtk copy: Copies’ Objects

Copies’ one MTKObject to another.

Usage: mtk copy(<dest mtk object>, <src mtk object>)

where <dest mtk object> is the destination object, which will hold the new copy; and
<src mtk object> is the source object, the one which will be copied.

Example: Copying the HMM object Predictor .

Declaration=

Const

...

Var

MTKObject : Predictor_Copy;

...

Events=

event = event(TIME)

condition = (TRUE)

action =

{

...

mtk_copy(Predictor_Copy, Predictor);

...

206 CHAPTER 11. MODELING TOOL KIT

};

11.7.1.6 mtk delete: Deletes Created Objects

Deletes any created MTKObject.

Usage: mtk delete(<mtk object name>)

where <mtk object name> is the name of the MTKObject variable to be deleted.

Example: Deleting the HMM object

Events=

event = event(TIME)

condition = (TRUE)

action =

{

...

mtk_delete(Predictor);

...

};

11.7.2 Initializing MTK Parameters

Motivated by the need to initialize the MTK objects before the start of the simulation, a
special event parameter, called INIT, was created. Any event whose parameter is set to
INIT is scheduled just one time, when the simulation time is equal to zero. This allows the
user to execute an action, or a group of actions, before the simulation actually starts.

The INIT keyword is used in the same way as any event distribution name keyword is:

Example:

Events=

event = event_name(INIT)

condition = (TRUE)

action =

{

...

/* Actions */

...

};

11.7. INTEGRATION WITH TANGRAM-II 207

The only difference is that each Tangram-II object can have only one event of this type
(with this parameter).

Special care should be taken with the messages sent during these events, since no
assumptions can be made on the order of their execution and, consequently, no order of
message delivery is guaranteed. Finally, even if a user defines an event of this kind, he is
still obeyed to initialize the model variables and constants in Initialization section, but
nothing hinders the user from overwriting these values inside the event code.

As stated above, an event of this type is useful to bootstrap a MTK object before
simulation starts, reading a trace or setting its parameters. It is also helpful to initialize
a long Tangram-II vector, eventually with a special logic, and it allows users to initialize
model variables with mathematical expressions, possibly based on other model parameters,
which cannot be done in Initialization section.

11.7.3 Compilation Directives

11.7.3.1 #ifdef

The Tangram-II modeler can restrict the parsing of a given portion of code using the
compilation directives SIMULATION and CHAIN GENERATION. Using that, the user can create
an hybrid model, where some of its parts are executed according to the compilation context.

To define a portion of code which will be parsed and executed only when the model is
simulated, the modeler should write:

(...)

#ifdef SIMULATION

/* Simulation code here */

#endif

(...)

The usage of the directive CHAIN GENERATION is analog. Note that any portion of code
can be involved by the ifdef environment, from a simple statement to a set of events.

11.7.3.2 #include

This directive allows a Tangram-II user to include a piece of code written into another
file, instead of the TGIF interface. This feature can improve code reuse, since the same
file would be included from distinct portions of code. Moreover, this allows the users to
modify its model parameters without having to use the TGIF graphical interface, which
can be useful in case of remote usage.

11.7.4 TGIF Multi-Page Model

A Tangram-II model can be defined by placing their objects into a multi-page TGIF file.
This is specially useful to define complex models with many objects. Note that a user

208 CHAPTER 11. MODELING TOOL KIT

cannot create more than one object with the same name, even if they are disposed into
different pages.

For this feature to work, it is necessary to have TGIF tool version 4.1.45.4 or later.

Chapter 12

FreeMeeting

FreeMeeting is a real-time multimedia communication tool, that allows users to transmit
audio and video over the Internet. It started as a voip tool, called VivaVoz, which was
implemented in 1999. Later, in 2005, VivaVoz was integrated with the Comitvideo tool,
which transmitted video over the Internet. As a result of this integration, Freemeeting was
created.

For further information, please refer to FreeMeeting’s website at
http://www.land.ufrj.br/tools/tools.html.

209

210 CHAPTER 12. FREEMEETING

Appendix A

Output File Formats

A.1 Introduction

The main purpose of this appendix is describe all files that are generated by the TANGRAM-
II tool.

A.2 Model Environment Module

The following files are generated by the Model Environment Module:

1. 〈name of the model〉.obj - This file is generated by the TGIF tool. This is a ASCII
text file, that has a graphic representation of the model and is composed by the TGIF
functions.

2. 〈name of the model〉.parser - This file is a C program text. All objects in the model
are described, with its attributes, events and so on. This file is the output for the
grammar.c program.

3. 〈name of the model〉.events - This file lists all events in the model. The format is:

name of object.name of event

4. 〈name of the model〉.states - The entire state space is described here. The format
is:

state number all state variables of the model

The state variables are listed in the same order as in the < name of the model >
. < vstat > file.

211

212 APPENDIX A. OUTPUT FILE FORMATS

5. 〈name of the model〉.vstat - This file has all state variables. The format is:

name of object.state_variable

6. 〈name of the model〉.state variable

7. 〈name of the model〉.maxvalues - This file has the state variables with their respec-
tives maximum values (these values are relationed with the specified model). The
format is:

name of object.state maximum value

8. 〈name of the model〉.user.code.c - This file is generated automatically. It contains
the user code for actions, messages and expressions.

9. 〈name of the model〉.parameter - This file is always generated. But it is fill in only
if the model has the literal parameter. There is a association between a parameter
and a letter.The format is:

letter name of object.parameter

10. 〈name of the model〉.generator mtx - This file represents the Q generator matrix
of the model. The format is:

previous state actual state transition probability

11. 〈name of the model〉.generator mtx expr - This file is always generated. But it is
fill in only if the model has the literal parameter.The format is:

total number of the parameters

letter name of object.parameter (association)

number letter (association)

12. 〈name of the model〉.generator mtx param - This file represents the Q generator
matrix of the model, but intead of the absolute value, the transition probabilities are
the parameters specified in the model.

13. 〈name of the model〉.NM.st trans prob mtx - This file represents the transition
probabilities matrix and it is generated only for Non Markovian Models. The format
is:

previous state actual state probability

A.2. MODEL ENVIRONMENT MODULE 213

14. 〈name of the model〉.tables dump

15. 〈name of the model〉.rate reward.〈name of object.name of the reward〉 - This file
is generated by the Mathematical Model Module and has the rate reward in each
state, when the condition of the reward is true. The format is:

state value of reward

16. 〈name of the model〉.impulse reward.〈name of object.name of the reward〉 - This
file is generated by the Mathematical Model Module and has the impulse reward.

17. 〈name of the model〉.rate reward.GlobalReward.〈.name of the reward〉 - This file
is generated by the Mathematical Model Module and has the global rate reward.

18. 〈name of the model〉.rate reward.expr - This file has the expression of the reward.

19. 〈name of the model〉.reward levels.〈name of the reward〉

20. 〈name of the model〉.absorb st - This file has all absorbing states in the model.

21. 〈name of the model〉.config - This file is generated by the TANGRAM-II interface
(menu → config). These settings are used to set some parameters in TANGRAM-II
tool.

22. 〈name of the model〉.OUT.〈name of the output file〉

23. 〈name of the model〉.uniform rate - This file has the uniformization rate of the
Continuos Markov Chain. The format is:

uniformization_rate

24. The files below are generated only for non-Markovian models:

(a) 〈name of the model〉.NM.st trans prob mtx: This file is generated only for
Non Markovian Models. It includes the transition probabilities of the uni-
formized Markov chain that is obtained when all the events in the model are
assumed to have exponential rates. The format is:

previous state actual state probability

(b) 〈name of the model〉.NM.chns betw embed pnts: This file contains, for each
deterministic event, the Markov chains that are obtained between embedded
points (details in the solution technique used). The following information is
included:

214 APPENDIX A. OUTPUT FILE FORMATS

i. The uniformization rate (taken from the exponential matrix considering all
events exponential).

ii. event; id of the deterministic event; number of independent chains; boolean
variable (1): there is an absorbing state; (0) otherwise; inverse of the deter-
ministic rate.

iii. -1; id of the state variable; id of the independent chain; -1 0 0: delimiter

iv. Definition of each independent chain for the event: chain; id of the inde-
pendent chain; number of states; uniformization rate for the independent
chain; state state probability (the state id is already properly renumbered);
-1 0 0

(c) 〈name of the model〉.NM.embedded points: This file contains all the transi-
tions (from state, to state) that are associated with the firing of a deterministic
event, i.e., all the embedded points considering only the execution of a deter-
ministic event.

(d) 〈name of the model〉.NM.embedded points expr

(e) 〈name of the model〉.NM.states det ev: This file contains all the states in
which a deterministic event is enabled.

(f) 〈name of the model〉.NM.embedded chain mapping: This is the mapping from
the state id of the Markov chain considering all events with exponential rates
to the state id of the resulting embedded chain.

(g) 〈name of the model〉.NM.embedded chain

(h) 〈name of the model〉.NM.emb points st probs: The steady-state probabilities
for the embedded chain.

(i) 〈name of the model〉.NM.expected cycle length: The expected length of the
intervals between embedded points.

(j) 〈name of the model〉.NM.interest measures: Indicates which state variables
are considered for the calculation of the marginal probabilities. Note: although
not included in the interface, joint probabilities can be calculated as well using
this file.

(k) 〈name of the model〉.NM.marginal probs: The resulting marginal probabili-
ties obtained for the non-Markovian models. The state variables used for calcu-
lating the marginal probabilities are specified by the user in the interface.

25. 〈name of the model〉.partition - This file lists all partitions used in the GTH block
method.

26. 〈name of the model〉.SS.gth - This file is generated by the Analytical Solution Mod-
ule - Stationary State GTH Solution Method, and has the vector probabilities in
steady state. The format is:

A.2. MODEL ENVIRONMENT MODULE 215

state probability

27. 〈name of the model〉.SS.gthb - This file is generated by the Analytical Solution
Module - Stationary State GTH block version Solution Method, and has the vec-
tor probabilities in steady state. The format is

state probability

28. 〈name of the model〉.SS.jacobi - This file is generated by the Analytical Solution
Module - Stationary State Jacobi Solution Method, and has the vector probabilities
in steady state. The format is:

number of iterations

state probability

29. 〈name of the model〉.SS.gauss - This file is generated by the Analytical Solution
Module - Stationary State Gauss-Seidel Solution Method, and has the vector proba-
bilities in steady state. The format is:

number of iterations

state probability

30. 〈name of the model〉.SS.power - This file is generated by the Analytical Solution
Module - Stationary State Power Solution Method, and has the vector probabilities
in steady state. The format is:

number of iterations

state probability

31. 〈name of the model〉.SS.sor - This file is generated by the Analytical Solution Mod-
ule - Stationary State Succesive Over Relaxation Solution Method - and has the vector
probabilities in steady state. The format is:

number of iterations

state probability

32. 〈name of the model〉.TS.pp.〈TIME〉

33. 〈name of the model〉.TS.brew.cumulat distrib

34. 〈name of the model〉.TS.brew.expected period

35. 〈name of the model〉.TS.exptr

216 APPENDIX A. OUTPUT FILE FORMATS

36. 〈name of the model〉.TS.operational time

37. 〈name of the model〉.SIMUL.〈name of the simulation result〉 - This file is gener-
ated by the Simulation Solution Module - Batch Simulation and Rare Simulation -
and has all informations about the rewards specified in the model (Rewards part).

38. 〈name of the model〉.threshold - This file is generated by the Simulation Solution
Module - Rare Simulation. The format is:

<name of object>.<state variable used in rare simulation>

threshold splits

39. 〈name of the model〉.INTSIMUL.〈name of the simulation result〉

40. 〈name of the model〉.IM.〈name of measure of interest〉 - This file is generated by
the Measures of Interest Module. The format depends of the kind of the measure
calculated:

(a) PMF of one or more state variables
Without Conditional:

name of the measure

expected value of the measure

probability mass function (PMF) of the state variable

choosen

With Conditional:

name of the measure

expected value of the measure

probability of the condition is true in the model

list of all states when the Conditional is true

(b) Function of state variables
Without Conditional:

name of the measure

function

expected value of the function

0.0 - probability of the function is false in the model

1.0 - probability of the function is true in the model

With Conditional:

name of the measure

function

A.2. MODEL ENVIRONMENT MODULE 217

condition

probability of the condition is true in the model

condition expected value of the function

0.0 - probability of the conditional function is false in

the model

1.0 - probability of the condtional function is true in

the model

(c) Probability of a set
Without Conditional:

name of the measure

set description

set probability

1 - set probability

With Conditional

name of the measure

set description

conditional

conditional set probability

The following files are generated by the Traffic Modeling Module, in the Model Environment
Module:

1. Markovian Models:

(a) 〈name of the model〉.intervals - This file is generated by the interface. The
format is:

number of intervals

initial observation time final observation time number

of points

(b) 〈name of the model〉.init prob - This file is generated by the interface and has
the initial probability. The format is:

initial state probability

(c) 〈name of the model〉.idc - This file has the idc measure. The format is:

observation time IDC mean E[N(t)] variance Var[N(t)]

second moment E[N2(t)]

(d) 〈name of the model〉.autocovariance - This file has the autocovariance mea-
sure. The format is:

218 APPENDIX A. OUTPUT FILE FORMATS

observation time Cov[X(t),X(t+time)]

(e) 〈name of the model〉.autocorrelation - This file has the autocorrelation mea-
sure. The format is:

observation time Cor[X(t),X(t+time)]

(f) 〈name of the model〉.stationary descriptors - This file has the stationary de-
scriptors measures: mean, second moment, variance, burtiness and peak value.
The format is:

expected value

second moment

variance value

peak value

burstiness

2. Traces:

(a) 〈name of the model〉.seq idc - This file has the idc measure. The format is:

observation time IDC mean E[N(t)] variance Var[N(t)]

second moment E[N2(t)]

(b) 〈name of the model〉.seq autocovariance - This file has the autocovariance mea-
sure. The format is:

observation time Cov[X(t),X(t+time)]

(c) 〈name of the model〉.seq autocorrelation - This file has the autocorrelation
measure. The format is:

observation time Cor[X(t),X(t+time)]

(d) 〈name of the model〉.stationary descriptors - This file has the stationary de-
scriptors measures. The format is:

min rate

max rate

expected value E[trace]

variance value E[trace]

Appendix B

How to Create a New Object

B.1 Introduction

The main purpose of this appendix is describe how we can create a new object that can
be used in other models.

B.2 Creating a New Object

To create a new object, the steps that must be followed are:

1. In the TANGRAM2 OBJECTS domain choose obj template.sym;

2. Now create a new figure for the object;

3. Select the new figure and in the Edit Menu choose cut or copy;

4. Select the object template;

5. In the Special Menu, choose “Replace Graphic” . The old graphic is replaced by the
new figure in the cut buffer;

6. You can choose “yes” or “no” in the menu that opens. If you choose “no”, a new
symbol is created and stored using the file name just given.

To store a new object in the library, the steps that must be followed are:

1. In the Special Menu, choose “Make Symbolic” .

2. We can store the new object in the TANGRAM2 OBJECTS domain , or we can
create a new domain. To create a new Domain , we must create a new directory
(named Mydomain, for example) and in the .Xdefaults file we must specify the path
of this new domain.

219

220 APPENDIX B. HOW TO CREATE A NEW OBJECT

Tgif*MaxDomains: total number of domains

Tgif*DomainPath(#of domain):MYDOMAIN:/home/nameofuser/Mydomain

3. Choose the new domain (Special Menu/Change Domain);

4. In the Special Menu, choose “Save Sym in Library” ;

5. Give the new name to the object and then select the directory.

This object can now be used in other models.
Note: You can create a new object symbol and store it in the domain of your choice.

B.3 Creating a New Model

1. In the Modeling Environment press “File” and then “New”;

2. Specify a new filename and press “create”;

3. In the TGIF interface, choose “Special” and them “Domain”. Afterwards choose
“Change Domain”;

4. Choose the TANGRAM2 OBJECTS domain ;

5. Instantiate obj template.sym or any other object symbol available in the domain.

Appendix C

How to Connect Ports

C.1 Introduction

All ports in our model can be set automatically. To do this, we must use some features of
the TGIF tool. The main purpose of this appendix is to describe the necessary steps to
perform this task.

C.2 Connecting two ports

To connect two ports in the model, the steps that must be followed are:

1. Choose an object (as shown in 2);

2. Choose “port.sym” in the TANGRAM2 OBJECTS domain;

3. In the “port.sym”, instantiate the name attribute. This name must be the same of the
type Port of the object (in the declaration attribute) where the port will be included.
If the object has n ports, you must instantiate n “port.sym”;
Obs: Port (in the declaration attribute): port A;
name (attribute of port.sym): port A;

4. Now, you must attach all ports to the object. Select all ports and the corresponding
object. In the Special menu, choose “Ports and Signals”. Then choose “Merge Ports
with an Object” ;

5. Next, you must transform this object into a symbol. In the Special menu, choose
“Make Symbolic” . If you want, you can save this new symbol in a library. Now you
can instantiate this object port-enable whenever you want;

6. Repeat all steps to the other object;

221

222 APPENDIX C. HOW TO CONNECT PORTS

7. Now you must connect two ports. In the Special Menu, choose Ports and Signals.
Then, choose Connect two Ports by Wire . When the mouse pointer is located
over a port, the feature it is highlighted. Click the left mouse button and connect
the wire to another port, and then choose a name of the connection. If you look at
the Initialization attribute of each object, you will observe that the chosen port
has its name set to the connection name.

Note: Note that you can create new icons, with ports, for an object and replace then for
an old icon using the steps in B-2.
Note: If when you move any object connected by a wire to another object, and you want
the connecting wire to follow the movement, click the “constrained move” icon in the TGIF
pallete.

To move the name of a wire

1. Selecting the wire;

2. Type <ALT> + <M>;

3. Click the mouse left button and select signal name;

To change the name of a wire connection:

1. The corresponding objects must be symbols;

2. Select special - ports and signals - clear signal name for a port and then click
in all ports connected by the wire;

3. Make a new wire connection.

Note: To save the model, you must UnMake symbolic all objects;

C.3 Connecting more than two ports by a broadcast link

In some cases, is necessary to connect various ports to the same broadcast link. This
is possible using a special TGIF features. To connect more than two ports to the same
broadcast link, the steps that must be followed are:

1. First, you must have the objects with their own ports instantiated (see C-2, steps 1
to 6).

x x x

object1/port1 object2/port2 object3/port3

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

2. Now, create and as instantiate one port for each object. The port must have the
same name the ones in the objects:

C.3. CONNECTING MORE THAN TWO PORTS BY A BROADCAST LINK 223

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

x x x

x x x

object1/port1 object2/port2 object3/port3

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

3. Draw a line (use the draw tool of TGIF) connecting the ports:

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

----x---------------------------------x------------------------x---------------

x x x

object1/port1 object2/port2 object3/port3

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

4. Select the line and ports then choose Connect Ports to a Broadcast Wire from
the Ports and Signals submenu in the Special menu. Fill the dialog box eiht a
name for the broadcast connection, e.g., broad1.

broad1

----x---------------------------------x------------------------x---------------

5. Choose Connect Two Ports by a Wire from the Ports and Signals submenu in
the Special menu, then connect the first port from the first object to the broad1 line.
Fill the dialog box with broad1 or other that you want.

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

----x---------------------------------x------------------------x---------------

|

x x x

object1/port1

(name = broadcast_port)

6. To connect the other ports use Repeat Connect Two Ports by a Wire

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

----x---------------------------------x-----------------------x---------------

| | |

x x x

object1/port1 object2/port2 object3/port3

(name = broadcast_port) (name = broadcast_port) (name = broadcast_port)

224 APPENDIX C. HOW TO CONNECT PORTS

Appendix D

The Syntax Used in The Models

D.1 Introduction

The main purpose of this appendix is describe briefly the syntax used in the models specified
in TANGRAM-II tool. The syntax is more detailed in the examples section.

D.2 Syntax

D.2.1 Attributes

object=

<Declaration attribute>

<Initialization attribute>

<Events attribute>

<Messages attribute>

<Rewards attribute>

<Declaration attribute>=

Declaration=

<Declaration definition>

<Declaration definition>=

<Var definition>

<Const definition>

<Param definition>

<Var definition>=

State : <identifier list> ;

Float : <identifier list> ;

225

226 APPENDIX D. THE SYNTAX USED IN THE MODELS

Integer : <identifier list> ;

FloatQueue : <identifier list> ;

IntegerQueue : <identifier list> ;

<Const definition>=

Integer : <identifier list> ;

| Float : <identifier list> ;

| Object : <identifier list> ;

| Port : <identifier list> ;

<Param definition>=

Integer : <identifier list> ;

| Float : <identifier list> ;

<Initialization attribute>=

<state identifier> = <integer number>

|<integer identifie> = <integer number>

|<float identifier> = <float number>

|<object identifier = <object name>

|<port identifier> = <port name>

<Events attribute>=

Events=

<Event description>

<Event description>=

<event definition>

<event condition definition>

<action definition>

<event definition>=

event = <event name>(<distribution type>, <expression>)

<distribution type> = exp | det

<event condition definition>=

condition = (<boolean expression>)

<action definition>=

action = <action code>;

| action = <action prob list>;

D.2. SYNTAX 227

<action code>=

<variable declaration attribute>

<statement sequence>

<action prob list>=

<action code>; <prob definition>

<prob definition>=

prob = <expression>;

<Message attribute>=

Messages=

<Message description>

<Message description>=

<message definition>

<action definition>

<message definition>=

msg_rec = <port identifier>

<Rewards attribute>=

Rewards=

<reward definition>

<reward definition>=

<reward rate header> <reward cond value list>

| <reward impulse header> <reward event value list>

<reward rate header>=

rate_reward = <reward identifier>

<reward impulse header>=

impulse_reward = <reward identifier>

<reward cond value list>=

condition = (<boolean expression>)

value = <expression> ;

<reward event value list>=

event = <event name>, <triggers>

228 APPENDIX D. THE SYNTAX USED IN THE MODELS

value = <expression> ;

D.2.2 C statements

The following C statements can be used :

<if statement>=

if (<boolean expression>) <statement>

<if else statement>=

if (<boolean expression>) <statement> else <statement>

<while statement>=

while (<boolean expression>) <statement>

<switch statement>=

switch (<identifier>) <case sequence>

<case sequence> = <case sequence> <case statement> | <case statement>

<case statement> = case <integer>: <statement sequence> break;

| case <integer>: <statement sequence>

| default: <statement sequence>

<for statement>=

for (<assignment sequence>; <boolean_expression>; <for assignment statement>)

<statement>

<for assignment statement>=

<assignment identifier> = <expression>

<assignment sequence>=

<assignment sequence>, <for assignment statement>

| <for assignment statement>

D.2.3 Other statements

<msg statement>=

msg (<message port identifier>, <object identifier>, <expression>)

<objcmp statement>=

objcmp (<object identifier>, <object identifier>)

D.2. SYNTAX 229

D.2.4 Functions

<power function>=

pow (<first expression>, <second expression>)

<sqrt function>=

sqrt (<expression>)

<get function>=

get_st (<auxiliary var>, <state var>) |

get_st_float (<auxiliary var>, <state var>)

<set function>=

set_st (<state var>, <auxiliary var>) |

set_st_float (<state var>, <auxiliary var>)

D.2.5 Some reserved words

msg source The object identifier that sent the received message in the port.

msg data The last parameter in the msg statement. Represents the information that can
be sent in the message. It is an integer value in this version.

230 APPENDIX D. THE SYNTAX USED IN THE MODELS

Bibliography

[1] Werner Almesberger. URL ftp://lrcftp.epfl.ch/pub/linux/atm/. ATM on Linux re-
lease 0.4.

[2] Werner Almesberger. URL http://lrcwww.epfl.ch/linux-atm/. ATM support for
Linux.

[3] Jan Beran, Robert Sherman, Murad S. Taqqu, and Walter Willinger. Long-Range De-
pendence in Variable-Bit-Rate Video Traffic. IEEE Transactions on Communications,
43(2/3/4):1566–1579, 1995.

[4] S. Berson, E. de Souza e Silva, and R.R. Muntz. An object oriented methodology for
the specification of Markov models. In Numerical Solution of Markov Chains, pages
11–36. Marcel Dekker, Inc., 1991.

[5] Bilmes, Jeff A. A Gentle Tutorial on the EM Algorithm and its Application to Param-
eter Estimation for Gaussian Mixture and Hidden Markov Models. Technical report,
University of Berkeley, 1997.

[6] R.M.L.R. Carmo, L.R. de Carvalho, E. de Souza e Silva, M.C. Diniz, and R.R. Muntz.
Performance/Availability Modeling with the TANGRAM-II Modeling Environment.
Performance Evaluation, 33:45–65, 1998.

[7] W. Chia-Whei Cheng. The TANGRAM graphical interface facility (TGIF) manual.
TGIF WWW at http://bourbon.cs.ucla.edu:8801/tgif/.

[8] Cover, Thomas M. and Thomas, Joy A. Elements of information theory. John Wiley
and Sons, Inc., 1991.

[9] C.E.F. de Brito, R.S. de Moraes, D.J. Oliveira, and E. de Souza e Silva. Comu-
nicação Multicast Confiável na Implementação de uma Ferramenta Whiteboard. In
17th Simpósio Brasileiro de Redes de Computa dores, pages 222–237, Maio 1999.

[10] C.E.F. de Brito, E. de Souza e Silva, and W. Cheng. Reliable multicast communication
and the implementation of TGWB, a shared vector-based whiteboard tool. Technical
report, UFRJ, 2000.

231

232 BIBLIOGRAPHY

[11] C.E.F. de Britto, E. de Souza e Silva, M.C. Diniz, and R.M.M. Leão. Análise Tran-
siente de Modelos de Fonte Multimı́dia. In 18th Simpósio Brasileiro de Redes de
Computadores, pages 519–534, May 2000.

[12] E. de Souza e Silva and H. Richard Gail. Calculating Cumulative Operational Time
Distributions of Repairable Computer Systems. IEEE Transactions on Computers,
c-35(4):322–332, 1986.

[13] E. de Souza e Silva and H. Richard Gail. The Uniformization Method in Performability
Analysis. Technical report, IBM Research Division, Thomas J. Watson Research
Center - Yorktown Heights, NY 10598, U.S.A., 2 1996.

[14] E. de Souza e Silva and H.R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. Journal of the ACM, 36(1):171–
193, 1989.

[15] E. de Souza e Silva and H.R. Gail. Analyzing scheduled maintenance policies for
repairable computer systems. IEEE Trans. on Computers, 39(11):1309–1324, 1990.

[16] E. de Souza e Silva and H.R. Gail. Performability analysis of computer systems: from
model specification to solution. Performance Evaluation, 14:157–196, 1992.

[17] E. de Souza e Silva and H.R. Gail. An algorithm to calculate transient distributions
of cumulative rate and impulse based reward. Stochastic Models, 14(3):509–536, 1998.

[18] E. de Souza e Silva and H.R. Gail. Transient Solutions for Markov Chains. In W. Grass-
mann, editor, Computational Probability, pages 44–79. Kluwer, 2000.

[19] E. de Souza e Silva, H.R. Gail, and R.R. Muntz. Efficient solutions for a class of
non-Markovian models. In Computations with Markov Chains, pages 483–506. Kluwer
Academic Publishers, 1995.

[20] E. de Souza e Silva and R.M.M. Leão. The Tangram-II Environment. In Computer
Peformance Evaluation - Modelling Techniques and Tools - 11th International Con-
ference (TOOLS2000), volume 1786, pages 366–369. Springer, Março 2000.

[21] E. de Souza e Silva, R.M.M. Leão, and M.C. Diniz. Transient analysis applied to
traffic modeling. In Workshop on Mathematical performance Modeling and Analysis
(MAMA) 2000. June 2000.

[22] E. de Souza e Silva, R.M.M. Leão, and R. Marie. An efficient approximation tech-
nique for calculating transient reward measures. In Proceedings of The Fourth In-
ternational Workshop on Performability Modeling of Computer and Communication
Systems (PMCCS4), pages 16–19, Williamsburg,USA, September 1998.

BIBLIOGRAPHY 233

[23] E. de Souza e Silva and R.R. Muntz. Métodos Computacionais de Solução de Cadeias
de Markov: Aplicações a Sistemas de Computação e Comunicação. VIII Escola de
Computação, Brasil, 1992.

[24] Duarte, Flávio P. and de Souza e Silva, Edmundo A. and Towsley, Don. An adaptive
FEC algorithm using hidden Markov chains. SIGMETRICS Perform. Eval. Rev.,
31(2):11–13, 2003.

[25] R. M.M.Leão E. de Souza e Silva and R. Marie. Efficient solutions for an approximation
technique for the tr ansient analysis of markovian models. Technical report, Institut
National de Recherche en Informatique et en Automat ique, Centre de Diffusion,
INRIA, 1996.

[26] Elliott, E. O. A model of the switched telephone network for data communications.
Bell Systems Technical Journal, 44:89–109, January 1965.

[27] D.R. Figueiredo and E. de Souza e Silva. Efficient Mechanisms for Recovering Voice
Packets in the Internet. In Proceedings of IEEE/Globecom’99, Global Internet: Appli-
cation and Technology Symposium, pages 1830–1837, Dezembro 1999.

[28] Gilbert, E. N. Capacity of a burst-noise channel. Bell Systems Technical Journal,
39:1253–1265, September 1960.

[29] W.K. Grassmann and D.P. Heyman. Equilibrium disrtibution of block-structured
markov chains with repeating rows. J. App. Prob., 27:557–576, 1990.

[30] W.K. Grassmann, M.I. Taksar, and D.P. Heyman. Regenerative analysis and steady
state distributions for Markov chains. Operations Research, 33(5):1107–1116, 85.

[31] R. H. A. Guérin and M. Naghshineh. Equivalent Capacity and Its Application to
Bandwidth Allocation in High-Speed Networks. IEEE Journal on selected areas in
communications, 9(7):968–981, 1991.

[32] A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skandinavsk
Aktuarietidskrift, 36:87–91, 1953.

[33] J.F. Kurose and K.W. Ross. Computer Networking. A Top Down Approach Featuring
the Internet. Addison Wesley, 2001.

[34] R.M.M. Leão, E. de Souza e Silva, and Sidney C. de Lucena. A Set of Tools for
Traffic Modeling, Analysis and Experimentation. In Computer Peformance Evalua-
tion - Modelling Techniques and Tools - 11th International Conference (TOOLS2000),
volume 1786, pages 40–55. Springer, Março 2000.

[35] Reliable Multicast Library. URL http://www.land.ufrj.br/tools/rmcast. Reliable Mul-
ticast Library site.

234 BIBLIOGRAPHY

[36] D.D. Loung and J. Biro. Needed Services for Network Performance Evaluation. In IFIP
Workshop on Performance Modeling and Evaluation of ATM Networks, Inglaterra,
Julho 2000.

[37] M. Martinello and E. de Souza e Silva. A Testbed tool for Network Performance
Evaluation and its Application to Connection Admission Control Algorithms. In 18th

Simpósio Brasileiro de Redes de Computadores, pages 30–46, May 2001.

[38] Elwalid D. Mitra and Robert H. A New Approach for Allocating Buffers and Band-
width to Heterogeneous, Regulated Traffic in an ATM Node. IEEE Journal on Selected
Areas in Communications, 13(6):1115–1127, 1995.

[39] Rabiner, Lawrence R. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[40] A.A.A. Rocha. Medições ativas na Internet: algoritmos baseados em retardo fim-a-fim
e experimentos. Master’s thesis, UFRJ-COPPE/Sistemas, Agosto 2003.

[41] A.A.A. Rocha, R.M.M. Leão, and E. de Souza e Silva. A Methodology to Estimate
One-way Delay and Internet Experiments (in portuguese). In XXII Brazilian Com-
puter Network Symposium(SBRC’04), Gramado, Brazil, May 2004.

[42] A.A.A. Rocha, R.M.M. Leão, and E. de Souza e Silva. A New Technique to Select
Packet Pairs to Estimate Bottleneck Link Capacity (in portuguese). In III WPerfor-
mance/XXIV SBC, Salvador, Brazil, August 2004.

[43] S. M. Ross. Approximation transition probabilities and mean occupation times in
continuos-time markov chains. Probability in the Engineering and Informational Sci-
ences, 1987.

[44] Silveira Filho, Fernando and de Souza e Silva, Edmundo A. Modeling the short-term
dynamics of packet losses. In Performance Evaluation Review, volume 34, pages 27–29,
December 2006.

[45] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

[46] Vielmond, Carolina C. L. B. de and Leão, Rosa M. M. and de Souza e Silva, Edmundo
A. Um modelo HMM hierárquico para usuários interativos acessando um servidor
multimı́dia. In Simpósio Brasileiro de Redes de Computadores, 2007.

[47] L. Zhang, Z. Liu, and C.H. Xia. Clock Synchronization Algorithms for Network Mea-
surements. In IEEE/Infocom, pages 160–169, New York, USA, Junho 2002.

	Modeling with TANGRAM-II
	Introduction
	Architecture
	The Model Specification Module
	The Mathematical Model Module
	Analytical Model Solution Module
	Measures of Interest Module
	Traffic Descriptors Module
	Simulation
	Traditional Discrete-Event Simulation
	Batch Simulation Module
	The Interactive Simulation Module

	Rare Event Simulation

	Hidden Markov Models Module
	Where we Go Next

	Getting Started
	Introduction
	Starting TANGRAM-II
	Step 1: Creating a Model
	The DOMAIN
	Specifying an object's attributes
	Connecting objects

	Step 2: Generating the State Space
	Step 3: Solving the Model (Analytically)
	Step 4: Obtaining the Measures of Interest
	Reward Models
	Step 5: Simulating the Model

	Simulation Programming with Tangram-II
	Messages Between Objects
	New commands
	Obsolete commands
	Commands get_ir() and set_ir()
	The special pseudo-event REWARD_REACHED
	The special reward rate_reward_sum
	State Variables of type Float
	Type cast
	Float/Integer Queue

	Where to Go Next

	Simulating with TANGRAM-II
	Introduction
	The TANGRAM-II Simulator
	Models with Rewards
	Discrete Event Simulation
	Messages and Events
	Event Distributions
	Event Cloning
	Batch Simulation
	Parallelize Runs
	Configuring your Network of Workstations
	Interactive Simulation

	Fluid Simulation
	On-off source
	3-state MMFS source
	Channel
	Sink
	server_queue_FIFO - CS
	server_queue_GPS - CS
	server_queue_GPS - CP
	fluid_leaky_bucket

	Where to Go Next

	Solvers
	Introduction
	Steady-state analytical solvers
	Direct Methods - GTH and Block GTH
	Iterative Methods - Jacobi, Gauss-Seidel, Power, and SOR
	Non-Markovian Models

	Transient analytical solvers
	Point Probabilities
	Uniformization Technique
	Approximation Technique
	Direct Method
	Iterative Method

	Distributions
	Cumulative Reward Distribution
	Cumulative Operational Time Distribution

	Plotting 3D or 2D graphics for time-varying measures
	Expected Values
	Expected Cumulative Rate Reward
	Uniformization Technique
	Approximation Technique

	Fraction of Time the Accumulated Reward is above a Level
	Expected Cumulative Impulse Reward

	Where to Go Next
	References

	Matrix Visualization - State Ordering
	Introduction
	How to use the Matrix Visualization - State Ordering
	Where to Go Next

	Traffic Modeling
	Introduction
	Traffic Modeling
	Connection Admission Control (CAC) Algorithms
	Regulated Traffic Algorithm
	Non-Regulated Traffic Algorithm

	Where to Go Next

	Traffic Generator Tool
	Introduction
	Using Tangram-II Traffic Generator
	Probe Generation Direction
	Probe Generation Model
	Generating Traffic Features

	Traffic Measures
	Measure Parameters
	Plotting the output of measures
	Histogram generation and MSE estimation

	Measuring with Tangram-II Traffic Generator
	Measuring in One-way
	Measuring in Two One-way
	Measuring in Round Trip
	Estimating delay distribution

	References

	Hidden Markov Models Module
	Introduction
	Creating Hidden Markov Models with TANGRAM-II
	Loading a Hidden Markov Model into the HMM Module
	Working with the HMM Module

	Examples
	Introduction
	The MMPP/Leaky Bucket Model
	Model Description
	Solving the Model

	Model with a Deterministic Server
	Model Description
	Solving the Model

	Output queueing Model
	Model Description
	Solving the Model
	Measures of Interest

	Traffic Model
	Model Description
	Solving the Model

	Set Cumulative Rewards Values
	Model Description

	Event Cloning
	Model Description

	Multiple action
	Model Description

	Model with Symbolic Parameters
	Model Description
	Solving the Model

	Gated Queuing Vacation Model
	Model Description
	Solving the Model

	Vector Variable Model
	Model Description

	Simulation Model with Animation
	Model Description

	An Availability Model
	Model Description

	A Database Model
	Model Description

	Go Back N Protocol Model
	Model Description

	Multiplex Channel
	Model Description
	Solving the Model

	The Geometric-sized Bulk Arrivals Model
	Model Description
	Recursion with Tangram messages

	The Binomial-sized Bulk Arrivals Model
	Model Description
	Limited Recursion and Vanishing States

	Whiteboard
	Introduction
	Using TGWB
	Environment
	TGWB Configuration
	mcastproxy

	Modeling Tool Kit
	Introduction
	Getting Started
	Setting Up MTK
	Starting MTK
	First Steps
	Creating and Working with Objects

	MTK's Main Commands
	Help
	List
	Set
	Show
	Quit

	Creating and Deleting Objects
	Available Plugins
	Intvalue Plugin
	Load
	Save
	Truncate
	Autocorrelation

	Floatvalue Plugin
	Load
	Save
	Truncate
	Autocorrelation

	Hidden Markov Model Plugin
	Load
	Save
	Normalize
	Model Parameter Estimation
	Likelihood
	Viterbi
	Simulate
	Forecast
	Symbol Value Time Average
	Symbol Value Sum Distribution
	State Probability
	Set Full Structure
	Set Coxian Structure
	Set Quasi Birth-Death Structure
	Set Gilbert Structure
	Fix Full Structure
	Fix Coxian Structure
	Fix Quasi Birth-Death Structure
	Fix Gilbert Structure
	Set Error Tolerance Value - Epsilon
	Import From Tangram-II

	Hierarchical Gilbert Hidden Markov Model Plugin
	Load
	Save
	Normalize
	Model Parameter Estimation
	Likelihood
	Viterbi
	Simulate
	Symbol Value Time Average
	Symbol Value Sum Distribution
	State Probability
	Set Full Structure
	Set Coxian Structure
	Set Quasi Birth-Death Structure
	Fix Full Structure
	Fix Coxian Structure
	Fix Quasi Birth-Death Structure
	Set Error Tolerance Value - Epsilon
	Import From Tangram-II

	Hierarchical General Hidden Markov Model Plugin - Fixed Batch
	Hierarchical General Hidden Markov Model Plugin - Variable Batch

	Creating Your Own Plugin
	Integration with TANGRAM-II
	Using MTK in a Tangram-II Simulation
	mtk_create: Creates Objects
	mtk_run: Executes Objects Methods
	mtk_get: Gets Object Attribute Value
	mtk_set: Sets Object Attribute Value
	mtk_copy: Copies' Objects
	mtk_delete: Deletes Created Objects

	Initializing MTK Parameters
	Compilation Directives
	#ifdef
	#include

	TGIF Multi-Page Model

	FreeMeeting
	Output File Formats
	Introduction
	Model Environment Module

	How to Create a New Object
	Introduction
	Creating a New Object
	Creating a New Model

	How to Connect Ports
	Introduction
	Connecting two ports
	Connecting more than two ports by a broadcast link

	The Syntax Used in The Models
	Introduction
	Syntax
	Attributes
	C statements
	Other statements
	Functions
	Some reserved words

